UNIWERSYTET ZIELONOGÓRSKI

Wydział Inżynierii Lądowej i Środowiska Instytut Inżynierii Środowiska

ROZPRAWA DOKTORSKA

SKŁAD CHEMICZNY ODCIEKÓW Z ODPADÓW PRZED I PO MECHANICZNO - BIOLOGICZNYM PRZETWORZENIU

Autor: mgr inż. Monika Suchowska-Kisielewicz Promotor: prof. UZ dr hab. inż. Andrzej Jędrczak

ZIELONA GÓRA 2008

Za cenne rady oraz wsparcie serdecznie dziękuje mojemu promotorowi i rodzinie

Spis treści

1.	Wprowadzenie	10
2.	Produkcja i jakość odcieków	12
2.	.1. Procesy przebiegające na składowisku w ujęciu fazowości ich przemian	12
	2.1.1. Rozkład tlenowy	
	2.1.2. Rozkład beztlenowy (fermentacja kwaśna)	14
	2.1.3. Rozkład beztlenowy (fermentacja metanowa niestabilna i metanowa stabilna)	15
n	2 Council i um housiges no soublesté noglebodu odnodów	17
2.	22. Czynniki wpływające na szybkość rozkładu odpadów	/ I
	2.2.1. Wilgotność odpadow	/ I 10
	2.2.2. Zawaliose substalieji ouzywczych	10 19
	2.2.5. Mikitoorganizmy	10 10
	2.2.4. Oddzyn pri 2.2.5 Temperatura	19 19
	2.2.5. Potenciał utleniania i redukcij	20
	2.2.7 Wymiar czasteczek	20
_		
2.	3. Produkcja odcieków	
	2.3.1. Modele obliczeń ilości odcieków	
	2.3.2. Produkcja odcieków w warunkach rzeczywistych	
2.	4. Skład fizyko-chemiczny odcieków z odpadów przed i po mechaniczno biologicz	nym
ր	rzetworzeniu	
	2.4.1. Mechaniczno – biologiczne przetwarzanie odpadów	
	2.4.2. Skład chemiczny odcieków ze ZOK i BPOK	
	2.4.3. Skład chemiczny odcieków z monoskładowisk BPOK	
2.	5. Intensyfikowanie procesów przebiegających na składowiskach	39
2	6 Dezomiony azotu w PDOV	42
4.	0. I i zemiany azotu w bi OK	43
2. 2.	.7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44
2. 2.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu 2.7.1. Modelowanie biochemicznych procesów degradacji 	
2.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	
2.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	 43 44 45 54 55
2.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	
2. 2. 3.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu 2.7.1. Modelowanie biochemicznych procesów degradacji 2.7.2. Wartości stałych szybkości hydrolizy, acidogenezy, acetogenezy i metanogenezy 2.7.3. Prognoza zmiany jakości odcieków w długim okresie czasu <i>Tezy pracy. Cel i zakres.</i> 	43 44 45 54 55 60
2. 2. 3. 3.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60 60
2. 2. 3. 3. 3.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60
2. 2. 3. 3. 3. 3. 3.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60 60 60 60 60
2. 2. 3. 3. 3. 3. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	
2. 2. 3. 3. 3. 3. 4. 4. 4.	 Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60 60 60 60 60 60 60 60 60 60 60 60 60
2. 2. 3. 3. 3. 3. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	
2. 2. 3. 3. 3. 3. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	
2. 2. 3. 3. 3. 3. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	
2. 2. 3. 3. 3. 3. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	
2. 2. 3. 3. 3. 3. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60 60 60 60 60 60 60 60 60 60 60 60 60
2. 2. 3. 3. 3. 3. 4. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60 60 60 60 60 60 60 60 60 60 60 60 60
2. 2. 3. 3. 3. 3. 4. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60 60 60 60 60 60 60 60 60 60 60 60 60
2. 2. 3. 3. 3. 3. 4. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu 2.7.1. Modelowanie biochemicznych procesów degradacji 2.7.2. Wartości stałych szybkości hydrolizy, acidogenezy, acetogenezy i metanogenezy 2.7.3. Prognoza zmiany jakości odcieków w długim okresie czasu <i>Tezy pracy. Cel i zakres.</i> 1. Tezy pracy 2. Cel pracy 3. Zakres pracy <i>Metodyka</i> 4.1.1. Stanowisko badawcze 4.1.2. Charakterystyka odpadów 4.1.3. Prowadzenie badań 2. Badania w skali technicznej 4.2.1. Stanowisko badawcze 4.2.2. Charakterystyka odpadów 4.2.3. Prowadzenie badań 	43 44 45 54 55 60 60 60 60 60 60 60 60 60 60 60 60 60
2. 2. 3. 3. 3. 3. 4. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60 60 60 60 60 60 60 60 60 62 62 62 63 64 64 65 65 66 66 66 66 66
2. 2. 3. 3. 3. 3. 4. 4. 4. 4. 4.	 7. Modelowanie zmian jakości odcieków w długim okresie czasu	43 44 45 54 55 60 60 60 60 60 60 60 60 60 60 60 61 62 63 64 65 65 66 66 66

5.	Wynt	ki badań	69
:	5.1. Wł	aściwości badanych odpadów	69
	5.1.1.	Skala laboratoryjna	
	5.1.2.	Skala techniczna	70
:	5.2. Ba	lania laboratoryjne	
	5.2.1.	Ilości powstających odcieków.	
	5.2.2. 5.2.2	Stęzenia zanieczyszczenia organiczne	
	5.2.2.2	2 Azot ogólny i azot amonowy	
	5.2.2.3	Zanieczyszczenia mineralne	
	5.2.2.4	PH, potencjał redoks i zasadowość	
	5.2.3.	Produkcja metanu w reaktorach S, SK, P I PK	83
:	5.3. Ba	lania w skali technicznej	
	5.3.1. 5.3.2	Ilosc powstających odciekow	ologicznym
	przetwoi	zeniu	
	5.3.2.	Zanieczyszczenia organiczne	
	5.3.2.2	2 Azot ogólny i azot amonowy	
	5.3.2.	 Zanieczyszczenia mineralne nH potencjał redoks i zasadowość 	
	0.5.2.	• • • • • •	
0.	Opra	cowanie wynikow	
	6.1. Zm	odyfikowany model matematyczny	
	6.1.1.	Wyznaczanie najlepszego estymatora dla k_h	
	6.1.1.	Procedura wyznaczania wartości najlepszego estymatora dla k_h	
	6.1.2.	Wyznaczanie wartości prognozowanej masy $m_{i(s)}$	
	6.1.3.	Równania wyznaczające wartości funkcji k_a , k_m , A_a , A_m	
	6.1.4.	Algorytm numeryczny wartości mas $m_{i(s)}, m_{i(Aq)}, m_{i(Ac)}, m_{i(Me)}$ i komputerow	y program
	jego real	izacji	113
	6.2. Ust	alenie warunków początkowych	
7.	Dysk	usja wyników	
,	7.1. Ob	jetość odcieków	
	7.1.1.	Skala laboratoryjna	
	7.1.2.	Skala techniczna	120
,	7.2. Stę	żenie i objętość wyprodukowanego metanu	
	7.2.1.	Skala laboratoryjna	123
,	7.3. Stę	żenia i ładunki zanieczyszczeń	
	7.3.1.	Skala laboratoryjna.	
	7.3.1.	Wyznaczenie czasokresów trwania taz rozkładu	
	7.3.1.2	Ładunki zanieczyszczeń	
	7.3.2.	Skala techniczna	
	7.3.2.	Wyznaczanie czasookresów trwania faz rozkładu	
	7.3.2.2	2 Stęzenia zanieczyszczeń	
	7.1 Sta	la szyhlaści hydrolizy, acidogonozy i matanogonozy ZOK i BPOK	1/0
	7. -1. Dia	it szybkösti nyuronzy, atiuogenezy i inetanogenezy ZOK i DrOK	
i	7.5. Wy	znaczenie prognozowanych mas węgla organicznego usuniętego w odpad	ach w fazie
	nyurunzy 159	, actuogenezy i metanogenezy w oparetu o wyznaczone doswiauczalnie sta	ne i uzkiauu
	130		
,	/.6. Poo	Isumowanie	

7.7	. Wnioski końcowe	
8.	Literatura	
9.	Spis rysunków	
10.	Spis tabel	
<i>11</i> .	Spis załączników	

Spis symboli i oznaczeń

A	- amplituda okresu, kg/rok ²
A_a	- amplituda okresu fazy acetogennej
A_c^{-}	- stężenie jonów octanowych
A_m	- amplituda okresu fazy metanogennej
AT4	- aktywność respiracyjna w czwartym dniu testu
AT7	 aktywność respiracyjna w 7 dniu testu
Biofrakcja	- drobna frakcja odpadów, wydzielona z odpadów pozostałych, o uziarnieniu
	mniejszym od 40 mm
С	- stężenia zanieczyszczeń w odciekach
$C_{(x)}$	- zawartość węgla w formie x w produkcie przemiany
$C_{(Ac)}$	 zawartość węgla w kwasie octowym
$C_{(Aq)}$	- stężenie rozpuszczonego węgla organicznego
$C_{(CH_4)}$	- stężenie węgla związanego w metanie
$C_{(CO_2)}$	- stężenie węgla związanego w ditlenku węgla
$C^{d}(x)$	- zużycie węgla w formie x przez biomasę mikrorganizmów (X)
$C^{g}(x)$	- zawartość węgla w formie x w substracie
$C_{(S)}$	- węgiel organiczny w odpadach
$C_{(S)_i}$	- stężenie węgla organicznego w składniku "i" odpadów
$C_{(X_A)}, C_{(X_M)}$	- stężenie węgla zasymilowanego przez biomasę acidogenną i metanogenną
d_z	- dyspersja materiały porowatego
dX/dt	 szybkość wzrostu mikroorganizmów
ET	- ewapotranspiracja
FE	- frakcja odpadów wykorzystywana energetycznie
GPR90	- całkowita produkcja gazu w 90 dniu rozkładu
q	- objętościowe natężenie przepływu
i = 1, 2, 3	- składniki odpadów: węglowodany, tłuszcze i białka

ΙΟ	- objętość odcieków
J	- współczynnik rozproszenia strumienia wilgoci
Κ	- współczynnik przeniesienia zanieczyszczeń z odpadów komunalnych
K _p	- współczynnik przeniesienia zanieczyszczeń z odpadów w odciekach
K_g	- współczynnik przeniesienia zanieczyszczeń z odpadów w gazie
k _a	 stały współczynnik fazy acetogennej
K _{a1} i K _{a2}	- stałe dysocjacji kwasu węglowego
K_{d_A}	- stała obumierania biomasy acetogennej
K_{d_M}	- stała obumierania biomasy metanogennej
K_H	- stała Henrego dla CO ₂
k _{dA}	- stała obumierania biomasy acidogennej
k _{d_M}	- stała obumierania biomasy metanogennej
k_h	- stała szybkości hydrolizy
k _h	- stała szybkości hydrolizy
k _{hs}	- stała szybkości hydrolizy odpadów łatwo ulęgających rozkładowi
k _{hu}	- stała szybkości hydrolizy odpadów umiarkowanie ulęgających
	rozkładowi
k _m	 stały współczynnik fazy metanogennej
K _s	- wartość liczbowo równa takiemu stężeniu S, przy którym szybkość wzrostu
	mikroorganizmów osiąga połowę wartości maksymalnej
K _{SA}	- stała nasycenia dla acidogenezy
K_{S_M}	- stała nasycenia dla metanogenezy
K _{SO}	- stała rozpuszczalności węglanów
K_w	 iloczyn jonowy wody
L/S	 współczynnik obrazujący stosunek objętości odcieków do suchej masy
	odpadów
$\sum L_{BZT_5}$	- sumaryczny ładunek BZT5 w odciekach
$\sum L_{R_{BZT_5}}$	- sumaryczny ładunek BZT5 usunięty w odciekach recyrkulowanych
MBP	- technologie mechaniczno-biologicznego przetwarzania odpadów

m_i	- masa i-tego komponentu
$m_{i(Aq)}$	- masa ulegająca hydrolizie
$m_{i(Ac)}$	- masa zanieczyszczeń w fazie acetogennej
$m_{i(C)}$	- masa węgla usunięta z odpadów w odciekach
$m_{i(G)}$	- masa węgla wyemitowana z odpadów w gazie
$m_{i(S)}$	- masa odpadów biodegradowalna
$m_{i(S_c)}$	- zawartość biodegradowalnego węgla w masie odpadów
$m_{i(Me)}$	- masa zanieczyszczeń w fazie metanogennej
m _{oc}	- początkowa masa biodegradowalnego węgla w odpadach
m _{ocr}	- masa biodegradowalnego węgla w odpadach z recyrkulacją odcieków
$m_{Od_{BZT_5}}$	- masa węgla usunięta w odciekach z układu wyrażona jako BZT_5
$m_{R_{BZT_5}}$	- masa węgla wprowadzona do układu w odciekach recyrkulowanych
	wyrażona jako BZT5
M_{C}	- masa molowa węgla
M_{O_2}	- masa molowa tlenu
0	- opady atmosferyczne
P_{co_2}	- ciśnienie parcjalne CO ₂
PET	- potencjalna ewapotranspiracja
PW	- pojemność polowa
R	- szybkość wymywania zanieczyszczeń
RET	- rzeczywista ewapotranspiracja
S	- stężenie substratu
\overline{S}_{o}	- początkowa masa zanieczyszczeń w odpadach podlegającą wymywaniu
\overline{S}	- masa zanieczyszczeń w odpadach podlegająca wymywaniu
SP	- spływy powierzchniowe
Stabilizat	- odpady po procesie MBP ustabilizowane w warunkach tlenowych lub
	beztlenowych
Т	- temperatura procesu

U_{CH_4}	 udział metanu w całkowitej objętości gazu
U_{CO_2}	 udział ditlenku węgla w całkowitej objętości gazu
V_{C_G}	- objętość całkowita gazu
V_G	 objętość wyemitowanego biogazu
V_{M_G}	 objętość molowa gazu
Х	- koncentracja mikroorganizmów
X_o	- początkowa masa biodegradowalna w odpadach
Y	- masowy współczynnik koncentracji biomasy
Y_A	 masowy współczynnik wydajności biomasy acitogennej
Y_{Ac}	- masowy współczynnik produkcji kwasu octowego z rozpuszczonego węgla
Y_M	- masowy współczynnik wydajności biomasy metanogennej powstający przy
	asymilacji jednostki masy rozłożonego węgla
Y_{CH_4}	- masowy współczynnik produkcji metanu z węgla związanego w kawasie
	octowym
Ζ	- zmienna pionowa
ZOK	- zmieszane (niesegregowane) odpady komunalne, kod 20 03 01
μ_{\max_A}	- stała właściwa szybkość maksymalnego wzrostu biomasy acidogennej
μ_{\max_M}	- stała właściwa szybkość maksymalnego wzrostu biomasy metanogennej
$\mu_{ m max}$	- maksymalna szybkość zużywania substratu
θ	- wilgotność odpadów

1. Wprowadzenie

Podstawowym zadaniem w zakresie gospodarki odpadami w I dekadzie XXI wieku jest zmniejszenie ilości odpadów usuwanych na składowiska, w tym zwłaszcza odpadów ulegających biodegradacji. Szczególne znaczenie w tym zakresie ma Dyrektywa Rady 1999/31/WE, w sprawie składowania odpadów. Zobowiązuje ona Polskę do zmniejszenia ilości składowanych odpadów komunalnych ulegających biodegradacji, w odniesieniu do ich masy wytworzonej w roku 1995 o: 25% do roku 2010, 50% do roku 2013 oraz 65% do roku 2020.

Wyznaczone cele można osiągnąć poprzez mechaniczno - biologiczne przetwarzanie (MBP) odpadów komunalnych przed składowaniem lub poprzez ich termiczne przekształcanie. Założenia krajowego planu gospodarki odpadami [106] i obowiązujące prawo pozwalają sądzić, że wymagania dyrektywy osiągane będą w Polsce, przede wszystkim, poprzez mechaniczno-biologiczne przetwarzanie zmieszanych odpadów komunalnych (ZOK).

Mechaniczno-biologiczne przetworzenie odpadów przed składowaniem zapewnia szereg korzyści [88, 121]:

- o przetworzone odpady są w znacznym stopniu ustabilizowane,
- złożone na składowisku tworzą odcieki o niskich stężeniach zanieczyszczeń i wykazują małą zdolność produkcji biogazu,
- o objętość odpadów, w zależności od technologii przetwarzania, zostaje zmniejszona o ponad 30%, a przekształcone produkty usunięte na składowisko dają się zagęścić nawet do 1.3 Mg/m³ [26].

Jakość odcieków ze składowisk ZOK była badana od kilkudziesięciu lat i została szeroko zaprezentowana w literaturze [11, 64, 98, 103]. Od kilkunastu lat badane są również odcieki ze składowisk, na których składowane są biologicznie przetworzone odpady komunalne (BPOK) [38, 57, 88, 121]. Większość tych badań prowadzono jednak na składowiskach, na których BPOK były składowane razem z nieprzetworzonymi odpadami komunalnymi lub z odpadami przemysłowymi. Informacje o ilości i składzie chemicznym odcieków z mono składowisk BPOK są wciąż ograniczone. Ustalenie wpływu mechaniczno - biologicznego przetworzenia odpadów na ilość i skład odcieków powstających na składowisku w długoterminowym okresie jego eksploatacji jest ważnym zagadnieniem dla zarządzającego obiektem. Informacje te są konieczne do:

- o określenia ryzyka zagrożeń wód gruntowych w rejonie składowania,
- o właściwego zarządzania odciekami (ujmowanie, oczyszczanie odcieków),

- prognozowania wpływu przetwarzania odpadów na wielkość i czas trwania emisji ładunków zanieczyszczeń w odciekach,
- o oceny wpływu zmian jakości odcieków na materiały wykorzystywane do budowy uszczelnienia misy składowiska i instalacji ujmowania i odprowadzania odcieków.

W pracy przedstawiono skład fizyko-chemiczny odcieków z odpadów przed i po mechaniczno-biologicznym przetworzeniu stabilizowanych w skali technicznej i laboratoryjnej, z recyrkulacją odcieków (jako techniką intensyfikującą stabilizację odpadów) i bez. Zaprezentowano również model (opracowany na podstawie stochastycznego modelu Zacharof" a [120,121]), opisujący zmianę masy biodegradowalnego węgla organicznego w odpadach stałych w fazach: hydrolizy, acidogenezy i metanogenezy oraz, w oparciu o wyznaczone numerycznie stałe szybkości tych przemian prognozowane zmiany zawartości węgla w odpadach, odciekach i biogazie dla okresu perspektywicznego.

2. Produkcja i jakość odcieków

2.1. Procesy przebiegające na składowisku w ujęciu fazowości ich przemian

Na rozkład odpadów stałych zdeponowanych na składowiskach mają wpływ procesy fizyczne, chemiczne i biologiczne. Produktami rozkładu są substancje stałe, płynne i gazowe, z których większość może stwarzać zagrożenie dla środowiska [63].

Rozkład fizyczny odpadów stałych związany jest z ich rozdrabnianiem i przemieszczaniem w złożu oraz z wymywaniem rozpuszczalnych w wodzie składników odpadów w wyniku przepływu wód opadowych przez złoże.

Przemiany chemiczne przebiegające na składowisku obejmują takie procesy jak hydroliza, zwietrzenie chemiczne, wytrącanie, sorpcja, desorpcja i wymiana jonowa [46, 64].

Ogólnie, procesy fizyko-chemiczne odgrywają istotną rolę podczas stabilizacji odpadów, jednakże głównym czynnikiem determinującym stopień i intensywność rozkładu odpadów jest aktywność mikrobiologiczna układu uzależniona od dostępności substancji organicznej łatwo ulegającej rozkładowi, wody, tlenu i światła.

Biologiczne procesy na składowisku przebiegają etapami, w których każdy ma własne wymagania środowiskowe oraz substratowe, i kończy się charakterystycznymi produktami końcowymi.

W literaturze spotyka się podział procesu zachodzącego na składowisku na od trzech do pięciu etapów [41, 48, 64, 80, 81, 82, 85, 88, 93, 123] W ujęciu trójetapowym wyróżnia się: wstępną fazę tlenową, fazę beztlenową–acidogenną oraz fazę beztlenową–metanogenną. Mechanizm ten nie opisuje wszystkich przemian zachodzących podczas rozkładu odpadów na składowisku. Podział V-fazowy uwzględnia: fazę wstępną I (stabilizacja w warunkach tlenowych), fazę wstępną II (przejściowa z warunków tlenowych do beztlenowych), fazę acidogenną, metanogenną niestabilną i fazę metanogenną stabilną [81, 85]. W podziale IV-fazowym pomija się fazę wstępną I ze względu na trudności w jej rozpoznaniu [93].

Podział procesu na poszczególne fazy dokonuje się w oparciu o skład fizyko-chemiczny odcieków oraz ilość i jakość ujmowanego biogazu [48, 81, 93] lub o założony prawdopodobny czas przebiegu poszczególnych faz. Według McBean i inni [64] prawdopodobne czasy trwania poszczególnych faz rozkładu odpadów w złożu, w ujęciu trójfazowym, są następujące:

- rozkład tlenowy około 2 tygodnie (trawa tak długo dopóki tlen wprowadzany do odpadów w czasie składowania jest dostępny);
- o fermentacja kwaśna 2 miesiące (w odpadach o wysokiej wilgotności);
- o fermentacja metanowa pozostały okres.

Podział faz ze względu na skład fizyko-chemiczny odcieków i biogazu dokonuje się w oparciu o założenia [48, 81, 85, 93]:

- I faza wstępna wysokie stężenia substancji organicznych w odciekach, warunki tlenowe w złożu oraz duża ilość substancji organicznych łatwo ulegających biodegradacji w odpadach;
- II faza acidogeneza nadal wysokie stężenia substancji organicznych w odciekach, intensywna produkcja krótko łańcuchowych kwasów organicznych (LKT), niskie wartości pH (5.5-6.5), metan w gazie praktycznie nie wykrywalny;
- III faza metanogenna niestabilna wzrost pH, obniżenie potencjału redoks do wartości ujemnych, wyraźny spadek LKT i ChZT, redukcja siarczanów do siarczynów, wzrost produkcji biogazu, wzrost stężenia metanu w gazie do wartości typowych dla fazy metanogennej stabilnej;
- IV faza metanogenna stabilna względnie stałe stężenia substancji organicznych w odciekach, wzrost wartości potencjału redoks, spadek produkcji biogazu, utrzymywanie się zawartości metanu w gazie na względnie stałym, wysokim poziomie około 60 70%.

2.1.1. Rozkład tlenowy

Rozkład tlenowy ma miejsce bezpośrednio po umieszczeniu odpadów na składowisku. Przebiega w warstwie powierzchniowej złoża i trwa tak długo, dopóki tlen wprowadzony do złoża wraz z odpadami nie zostanie zużyty w procesach biochemicznego rozkładu. Na składowiskach o dobrze zagęszczonych odpadach faza tlenowa trwa zwykle krótko z powodu małej zawartości powietrza w pustych przestrzeniach składowanych odpadów i ograniczonego jego transportu do złoża.

Podczas tej fazy mikroorganizmy tlenowe rozkładają biodegradowalne substancje organiczne znajdujące się w odpadach (odpadki kuchenne, odpady z zakładów rolno - spożywczych, odpadki ogrodowe) do związków organicznych o mniejszej masie cząstkowej, ditlenku węgla i wody.

Przebieg procesu opisuje ogólne równanie:

odpady org.częściowoulegające $+ O_2 \rightarrow CO_2 + H_2O + biomasa +$ rozłożone+ energia (1)rozkładowisubstancje org.

Stechiometryczny przebieg pełnego rozkładu tlenowego można przedstawić za pomocą reakcji:

$$\left(C_6 H_{10} O_5\right)_n + n H_2 O \to n C_6 H_{12} O_6 \text{ (hydroliza)}$$

$$\tag{2}$$

$$C_6 H_{12} O_6 + 6 O_2 = 6 C O_2 + 6 H_2 O \tag{3}$$

Wydzielony ditlenek węgla tworzy z wodą kwas węglowy:

$$CO_2 + H_2O = H_2CO_3$$
 (4)

$$H_2 CO_3 \stackrel{\rightarrow}{\leftarrow} H^+ + HCO_3^- \tag{5}$$

Efektem przemian jest wzrost udziału objętościowego ditlenku węgla w gazach zawartych w wolnych przestrzeniach powierzchniowej warstwy odpadów nawet do 90%, oraz wzrost temperatury odpadów o 10–20°C powyżej temperatury otoczenia. W wilgotnych słabozagęszczonych odpadach temperatura może sięgnąć 50°C [64].

W tej fazie rozkładu odcieki zwykle nie powstają, ponieważ odpady nie osiągają stanu nasycenia wodą. Pewne ilości odcieków, które mogą pojawiać się w złożu są wynikiem przepływu wody przez kanały i puste przestrzenie w odpadach. Charakteryzuje je mała zawartość substancji organicznych i duże ilości rozpuszczonych soli wymywanych z odpadów przez przesączającą się wodę.

Wraz z wyczerpywaniem się tlenu cząsteczkowego (etap rozkładu traktowany przez cześć autorów jako faza przejściowa [85]) rozpoczyna się redukcja utlenionych form azotu i siarki:

$$2CH_2O + NO_3^- + 2H^+ \to NH_4^+ + 2CO_2(\uparrow) + H_2O$$
(6)

$$2CH_2O + SO_4^- + 2H^+ \rightarrow H_2S(\uparrow) + 2CO_2(\uparrow) + 2H_2O \tag{7}$$

2.1.2. Rozkład beztlenowy (fermentacja kwaśna)

Rozkład beztlenowy odpadów prowadzany jest przez bakterie fakultatywne, które dominują w odpadach w miarę zużywania tlenu. Różnorodne populacje bakterii hydrolitycznych hydrolizują polisacharydy oraz białka i tłuszcze w rozpuszczone monomery i dimery (cukry, aminokwasy, kwasy tłuszczowe i glicerol). Produkty te rozkładane są dalej do krótko łańcuchowych kwasów organicznych (C_1 - C_6) (mrówkowego, octowego, propionowego,

masłowego, walerianowego i heksanowego), alkoholi (np.: metanolu, etanolu), aldehydów, produktów gazowych (azotu amonowego, wodoru, ditlenku węgla). Przebieg procesu obrazuje ogólne równanie:

odpady org.kwasy organiczne (
$$C_1$$
- C_6)ulegające \rightarrow CO2 + H2 + biomasa +alkohole(8)rozkładowialdehydy

Wysokie stężenia rozpuszczonego ditlenku węgla (efekt wysokiego ciśnienia parcjalnego w gazie) i kwasów organicznych w odciekach przyczyniają się do znacznego obniżenia pH odcieków od 5.5 do 6.5, co z kolei powoduje przechodzenie w formy rozpuszczalne innych organicznych i nieorganicznych składników odpadów. Zawartość CO₂ w gazie, w tym okresie, może osiągać 70% (v/v). Powstające odcieki są silnie chemicznie agresywne i wykazują wysoką przewodność właściwą.

2.1.3. Rozkład beztlenowy (fermentacja metanowa niestabilna i metanowa stabilna)

Po wyczerpaniu się tlenu i innych związków utleniających, (takich jak azotany, azotyny i siarczany) w odpadach zaczynają rozwijać się beztlenowe bakterie metanowe. Mikroorganizmy te reprezentują grupę bakterii bezwzględnych beztlenowców, które w porównaniu do bakterii kwasowych rozwijają się wolniej i tylko przy całkowitym braku tlenu. Są to bakterie bardzo wrażliwe na działanie zmiennych warunków pH i temperatury [46].

Faza fermentacji niestabilnej, w odpadach o odpowiednim poziome wilgotności, rozwija się stosunkowo szybko. Można ją zauważyć już po około 3 miesiącach składowania odpadów. W odpadach mniej wilgotnych pojawia się po dłuższym okresie, a w suchych może nigdy nie wystąpić. W czasie tej fazy, następuje powolny rozkład wyższych kwasów organicznych (głównie $C_3 - C_6$) do kwasu octowego, ditlenku węgla i wodoru przez odpowiednie grupy bakterii (faza acetogenna). Przykładowo rozkład kwasu propianowego może przebiegać według reakcji:

$$CH_3CH_2COO^- + 3H_2O \rightarrow CH_3COO^- + H^+ + HCO_3^- + 3H_2$$

$$\tag{9}$$

Bakterie metanowe do swoich procesów metabolicznych wykorzystują produkty wytworzone w czasie fazy acido- i acetogennej (wodór, ditlenek węgla, kwas octowy, metanol), produkując metan. Przebieg tych reakcji można przedstawić następująco:

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O \tag{10}$$

$$CH_3COOH \rightarrow CH_4 + CO_2$$
 (11)

$$4CH_3OH \rightarrow 3CH_4 + CO_2 + 2H_2O \tag{12}$$

Zużywanie kwasów organicznych podnosi pH odcieków do zakresu od 7 do 8. W konsekwencji odcieki stają się mniej agresywne chemicznie i zawierają mniejsze ilości kwasów organicznych. Przebieg stabilnej fazy fermentacji metanowej, wymaga występowania równowagi pomiędzy szybkością wytwarzania kwasów organicznych i produkcją metanu. W przeciwnym razie, nadmiar kwasów organicznych zakwasza środowisko, hamując rozwój populacji bakterii metanowych, a przy wysokich stężeniach działa na nie toksycznie [41].

W czasie fermentacji niestabilnej stężenie metanu w gazie rośnie do ok. 50 - 65% (v/v), a udział ditlenku węgla znacznie spada. Kończy się ona po osiągnięciu względnie stałej proporcji objętościowej CH_4 : CO_2 w gazie w zakresie od 1.2 do 1.5, która utrzymuje się przez długie lata [6]. Stabilna faza fermentacji metanowej w odpadach może wystąpić już po upływie 6 miesięcy lub dopiero po kilku latach zależnie od ich uwodnienia, szybkości przepływu odcieków przez złoże odpadów oraz od zawartości w odpadach substancji łatwo ulegających biodegradacji. Szybkość produkcji metanu w tej fazie osiąga maksimum, po czym powoli maleje.

Intensywny rozkład substancji organicznych na składowiskach trwa, nieprzerwanie, do chwili wyczerpania substancji organicznych ulegających biodegradacji i obejmuje okres, najczęściej, 10 lat. Po tym okresie, intensywność rozkładu wyraźnie spada, a biodegradacji ulegają trudnorozkładalne składniki organiczne, zawarte w zrębkach drewna i papierze (celuloza).

Emisję metanu na składowiskach obserwuje się nawet po 30 latach po zakończeniu składowania odpadów, jednak wówczas szybkość jego produkcji jest niewielka.

Poza metanem i ditlenkiem węgla gazowymi produktami beztlenowego rozkładu są również siarkowodór, wodór i amoniak.

Wysokie stężenia siarkowodoru są najczęściej wynikiem działalności bakterii redukujących siarczany (np. *Desulfovibrio desulfuricans*) [14, 105]. Siarkowodór występujący w odciekach w dużych ilościach, tworzy z metalami trudnorozpuszczalne siarczki. Zjawisko to z jednej strony jest korzystne, ponieważ powoduje obniżenie stężenia siarkowodoru i metali ciężkich w odciekach, składników, które mogą być toksyczne dla mikroorganizmów beztlenowych. Z drugiej strony jednak może spowodować, że niektóre pierwiastki śladowe (Ni, Co, Mo, Fe) niezbędne dla rozwoju bakterii, staną się dla nich niedostępne. Zakłócenia fermentacji wywołane przez siarkowodór obserwuje się gdy jego udział objętościowy w gazie wynosi około 1–2% [50].

Wodór pojawia się w odpadach podczas fazy acetogennej jako produkt rozkładu kwasów propionowego i masłowego. Reakcje te są możliwe do przeprowadzenia jeżeli ciśnienie parcjalne wodoru jest niskie (od 6 do 400 Pa) [41]. Acetogeneza może zatem przebiegać tylko w przypadku syntropii octanogenów z metanogenami konsumującymi wodór.

Odcieki powstające w fazie metanowej charakteryzują się odczynem zbliżonym do obojętnego oraz stosunkowo niską zawartością lotnych kwasów tłuszczowych i substancji rozpuszczonych (sucha pozostałość). Zauważalna jest niższa zawartość w odciekach łatworozkładalnych substancji organicznych. W porównaniu z fazą fermentacji kwaśnej stosunek CHZT : BZT₅ wyraźnie spada i osiąga wartość w przybliżeniu 0.06 [6]. Znacznie niższe są również stężenia siarczanów i metali. Wysokie stężenia azotu pozostają nadal, a nawet niejednokrotnie wykazują tendencję zwyżkową.

Azot amonowy powstaje w wyniku rozkładu związków organicznych bogatych w azot. Formy jego występowania w złożu odpadów zależną od wartości pH, temperatury oraz od ilości azotu w fermentowanym substracie. Mają one istotny wpływ na przebieg fermentacji. W środowisku wodnym azot amonowy przechodzi w jon amonowy zgodnie z reakcją:

$$NH_3 + H^+ \leftrightarrow NH_4^+$$
 (13)

Stwierdzono, że amoniak (NH₃) jest ponad 20-krotnie bardziej toksyczny niż jon amonowy. Hamuje rozwój metanogenów już przy stężeniu od 80 do 100 mg/dm³, natomiast przy stężeniu przekraczającym 150 mg/dm³ zabija je [41].

2.2. Czynniki wpływające na szybkość rozkładu odpadów

2.2.1. Wilgotność odpadów

Zawartość wody w odpadach ma istotny wpływ na rozwój mikroorganizmów w masie składowanych odpadów. Woda jest podstawowym składnikiem żywych organizmów. Wpływa na strukturę i właściwości odpadów oraz jest niezbędna do transportu surowców i produktów przemian materii [12].

Minimalny poziom wilgoci w odpadach wymagany do uruchomienia procesów biologicznego rozkładu jest bardzo niski. Rozkład odpadów można zaobserwować nawet w suchych składowiskach o wilgotności około 20%.

Na składowiskach wilgotność odpadów waha się od niskiej 15–20% do wysokiej 30–40%, z wartością średnią 25% i jest zmienna w różnych strefach składowiska. Efektywny przebieg stabilizacji odpadów na składowiskach wymaga utrzymania wilgoci na poziomie 60–70%.

Przekroczenie tych wartości może prowadzić do zmniejszenia efektywności procesów fermentacji w wyniku obniżania temperatury w złożu odpadów lub/i wprowadzania do złoża tlenu toksycznego dla bakterii anaerobowych [46]. Ponadto, bakterie kwasowe rozwijają się szybciej przy niskiej wilgotności odpadów, co może stać się czynnikiem inhibitującym w stosunku do populacji bakterii metanogennych. Wilgotność odpadów na składowisku zależy od ilości wody migrującej przez złoże w czasie eksploatacji składowiska, wilgotności składowanych odpadów oraz od rodzaju praktyk technologicznych ukierunkowanych na uzyskanie odpowiedniego jej poziomu.

Utrzymanie optymalnych zakresów wilgotności odpadów bez stosowania dodatkowych zabiegów technologicznych jest trudne do osiągnięcia. Nawet na terenach, w których roczny opad deszczu wynosi 1250 mm rzadko można uzyskać odpowiednią wilgotność odpadów [39]. Jedną z szeroko stosowanych metod utrzymywania pożądanego poziomu wilgoci w odpadach jest recyrkulowanie odcieków [68, 87, 107, 108] dawkowanie osadów ściekowych, ścieków przemysłowych lub niskiej jakości wody gruntowej [39].

2.2.2. Zawartość substancji odżywczych

Bakterie w celu zachowania odpowiedniej aktywności życiowej wymagają określonych substancji pokarmowych, takich jak: węgiel, azot, fosfor, siarka i pierwiastki śladowe. Całkowity rozkład substancji organicznych może nastąpić, gdy zachowane zostaną odpowiednie proporcje między węglem i pozostałymi pierwiastkami. Szczególnie istotny jest iloraz C:N, który w odpadach powinien wynosić od 10:1 do 16:1. Stosunek N:P:S powinien wynosić 7:1:1 [59]. Siarka i fosfor są składnikami, których najczęściej brakuje w ekosystemach składowiska.

Obok wyżej wymienionych substancji pokarmowych do prawidłowego rozwoju mikroorganizmów niezbędne są pierwiastki śladowe w formie rozpuszczonej [46].

2.2.3. Mikroorganizmy

W procesie beztlenowego unieszkodliwiania odpadów dominują bakterie acidogenne (kwasotwórcze), acetogenne (octanogenne) i metanogenne. Bakterie pierwszych dwóch faz beztlenowego rozkładu odpadów zaliczane są zarówno do obligatoryjnych beztlenowców (*Bacillus, Pseudomonas, Clostridium, Bifidobacterium*) jak i do beztlenowców fakultatywnych (*Streptococcus, Enterobacterium*). Niektóre bakterie kwasotwórcze są zaliczane do bezwzględnych beztlenowców (*Aerobacter, Alcaligenes, Clostridium, Escherichia, Lactobacillus, Micrococcus, Flavobacterium*) [41].

Zarówno bakterie fazy acidogennej, jak i acetogennej charakteryzują się długim czasem generacji, który w przypadku bakterii *Syntrophobacter wolinie* (wykorzystujących kwas propianaowy) wynosi aż około 7 dni [61].

Mikroorganizmy fazy kwaśnej są tolerancyjne na zmiany odczynu i temperatury, a szybkość ich wzrostu uzależniona jest, przede wszystkim, od rodzaju i stężenia substratu [91].

Bakterie metanowe należą do bezwzględnych beztlenowców. Tworzą wyspecjalizowane grupy przystosowane do przyswajania i przetwarzania określonych substratów (wyizolowano ponad 40 szczepów metanogenów). Generalnie metanogeny można podzielić się na dwie grupy: konsumentów kwasu octowego i H_2/CO_2 . Czas ich generacji mieści się w granicach od 15-85 godzin [41].

2.2.4. Odczyn pH

Zmiany pH odzwierciedlają zmienne fazy rozkładu odpadów. Niskie wartości pH korespondują z wysokimi stężeniami BZT₅ i LKT w odciekach, a jego wzrost z ich spadkiem. Niezależnie od wartości BZT₅ i LKT o wartości pH decyduje układ buforowy złoża, który jest zależny od obecności w cieczy odpadowej słabych kwasów (kwas weglowy, kwasy organiczne, siarkowodór) i słabych zasad (wodorotlenk amonu) [91]. Odczyn (pH) decyduje o rozpuszczalności związków organicznych i nieorganicznych oraz o prawidłowym funkcjonowaniu mikroorganizmów. Optymalna wartość pH dla bakterii prowadzących hydrolizę i przekształcanie monomerów w proste kwasy organiczne mieści się w zakresie od 5.2 do 6.3. Bakterie metanowe wymagają stałych warunków obojętnych; pH od 6.8 do 7.2 [13], a już małe zmiany pH powodują zaburzenia w ich rozmnażaniu. Optymalne pH dla procesów beztlenowego rozkładu odpadów w złożu, waha się od 6.7 do 7.5.

2.2.5. Temperatura

Temperatura w granicach złoża składowiska wpływa na rodzaj bakterii biorących udział w procesie i szybkość rozkładu odpadów. Optymalny zakres temperatury dla bakterii mezofilowych wynosi od 30 do 35°C, a dla termofilowych od 45 do 65°C. Fermentacja w zakresie termofilowym zapewnia wyższą o 25-30% szybkość rozkładu odpadów, przy obniżonym przyroście biomasy (około 50% przyrostu w stosunku do temperatury 35°C) [41]. Rzeczywiste temperatury w złożu odpadów, na składowiskach, są niepewne. Publikowane dane w większości są temperaturami szacowanymi na postawie temperatury gazu, a niezmierzonymi w zmiennych warunkach profilu składowiska.

Temperatura w warstwie powierzchniowej hałdy odpadów, w wyniku działalności mikroorganizmów tlenowych, osiąga wartość maksymalną (od 24 do 46°C) najczęściej w ciągu do 45 dni po umieszczeniu odpadów na składowisku. Wraz z rozwojem w złożu warunków beztlenowych temperatura odpadów maleje. W górnych warstwach składowiska obserwuje się znaczne wahania temperatury związane z wychładzaniem odpadów przez otaczające powietrze. W centralnych i głębiej zalęgających warstwach, ze względu na izolujący wpływ warstw odpadów, wahania temperatury są znacznie mniejsze. Na głębokości 15 m i większej, temperatura odpadów może sięgać do 70°C. Wysokie temperatury w głęboko zalegających warstwach odpadów występują na składowiskach, na których współskładowane są osady i/lub recyrkulowane są odcieki.

2.2.6. Potencjał utleniania i redukcji

utlenienia i redukcji (redoks) jest Potencjał kontrolowany przez działalność mikroorganizmów w odpadach oraz tlen wprowadzany z opadami i rozprzestrzeniany w złożu przez wody opadowe i dyfuzję. Efektywna produkcja metanu przebiega w złożu, w którym potencjał redoks jest mniejszy niż -330 mV [29], a minimalna jego wartość nie przekracza -550 mV [88]. Wartości potencjału redoks są ważną informacją o przebiegającym procesie stabilizacji beztlenowej odpadów. Gwałtowny spadek potencjału redoks do jego maksymalnych, ujemnych wartości wskazuje na rozpoczęcie fazy metanogennej niestabilnej, a szybki wzrost potencjału redoks koresponduje z rozpoczęciem fazy metanogennej stabilnej [48]. Wysoka infiltracja wód deszczowych z warstwy powierzchniowej odpadów w głab złoża może powodować wzrost wartości potencjału i pogorszenie efektywności produkcji metanu, zwłaszcza w górnych warstwach składowiska. Niskie wartości potencjału sprzyjają tworzeniu się siarczków, które mogą wiązać jony metali w trudno rozpuszczalne związki.

2.2.7. Wymiar cząsteczek

Wielkość cząsteczek odpadów ma istotny wpływ na intensywność procesów ich biologicznego rozkładu. Zmniejszanie rozmiaru cząsteczek umożliwia bezpośrednie działanie mikroorganizmów na większej powierzchni odpadów, ponadto zwiększa efektywność wymiany wody i pożywek, a w konsekwencji przyspiesza przebieg procesu rozkładu odpadów.

2.3. Produkcja odcieków

W minionych latach ogólną tendencją w eksploatacji składowisk było dążenie do minimalizacji ilości powstających odcieków. Lata eksploatacji tak zwanych "suchych" składowisk dowiodły, że ograniczenie dostępu wilgoci do złoża odpadów przyczyniało się do wydłużenia bioreaktywności składowisk i zwiększenia negatywnego oddziaływania na środowisko [117]. Obecnie widoczna jest wyraźna tendencja do eksploatacji tak zwanych "mokrych" składowisk (bioreaktorów), w których głównym celem jest utrzymywanie odpowiedniej wilgotności odpadów.

Określenie ilości powstających odcieków na składowiskach jest niezbędne do projektowania systemów ujmowanie i oczyszczania odcieków oraz prognozowania ilości wód dodatkowych, jakie powinny być zawracane do składowiska w celu optymalizacji procesu stabilizacji odpadów [11, 103].

W literaturze opisano szereg modeli opisujących zachowanie się wody w złożu odpadów i symulujących produkcję odcieków. Bierze się w nich pod uwagę dwa główne źródła wody:

- o wodę dostarczaną w składowanych odpadach;
- wodę wprowadzaną do składowiska w postaci: wody opadowej, poziomych dopływów oraz wody migrującej do złoża odpadów przez dno misy (woda dodatkowa) w wyniku kapilarnego podnoszenia.

W modelach z reguły pomija się wodę powstającą w wyniku przemian zachodzących w złożu odpadów oraz straty wody wywołane emisją ze składowiska gazów, które są niemal nasycone wodą. Udział tych strumieni w ogólnej produkcji odcieków nie przekracza 1%, nawet w przypadku odsysania gazu ze składowiska. Straty wody w wyniku naturalnej migracji gazu przez złoże do atmosfery są jeszcze niższe, ponieważ zawarta w nim woda kondensuje w dużym stopniu na powierzchni odpadów.

W bilansie masowym wody w składowisku, bierze się pod uwagę początkowy poziom wilgoci w odpadach, wodę dodatkową i wodę odprowadzaną w postaci odcieków [64]. Na rysunku 1 przedstawiono główne czynniki wpływające na równowagę wodną w składowisku.

Rys. 1. Składniki bilansu wodnego w zorganizowanych składowiskach

Bilans wodny składowiska skupia się wokół ilości wolnej wody obecnej w warstwie powierzchniowej. Dopóki pojemność wodna (PW) tej warstwy nie zostanie wysycona jej wilgotność zależy od ilości wody wprowadzonej w postaci opadów (O) i opuszczającej ją w wyniku ewapotranspiracji (ET) lub spływów powierzchniowych (SP). Odcieki powstawać będą, gdy ilość wprowadzonej wody przekroczy jej zapotrzebowanie do osiągnięcia przez grunt (odpady) stanu pełnego nasycenia. Ilość odcieków (IO) można obliczyć ze wzoru:

$$IO = O - ET - SP - \Delta PW \tag{14}$$

Wielkość opadów zależy od warunków klimatycznych rozpatrywanego rejonu. W klimacie umiarkowanym prawie wszystkie obszary mogą być opisane przez dwa sezony w cyklu rocznym: sezon suchy i mokry. W miesiącach sezonu mokrego (O>ET) następuje magazynowanie wody w warstwie powierzchniowej składowiska, a w miesiącach suchych (O<ET) jej wysuszanie.

Wielkość ewapotranspiracji z warstwy powierzchniowej złoża odpadów uzależniona jest od intensywności procesów tlenowych oraz od porowatości materiału [117]. Wysoka infiltracja odcieków powiązana ze spływami kanałowymi i wysoką porowatością materiału istotnie wpływa na zmniejszenie zjawiska ewapotranspiracji, natomiast intensywnie przebiegające procesy tlenowe powodują jej wyraźny wzrost. Yuen i inni [117] ustalili, że ewapotranspiracja na składowiskach otwartych stanowi 20% opadów, a ilość usuniętych odcieków 26%, a na składowiskach zamkniętych od 67 do 80% z objętością odcieków, od 3 do 4% opadów.

Warstwę powierzchniową złoża odpadów mogą stanowić: grunt mineralny (warstwa przekrywająca odpady), odpady lub gleba zabudowana biologicznie (składowiska zamknięte i zrekultywowane). Ilość zatrzymanej w niej wody zależy od rodzaju materiału, jego struktury i grubości warstwy.

Ilość odcieków zależy od stopnia heterogeniczności złoża. Rzeczywiste złoże odpadów jest niejednorodne; w odpadach występują zarówno składniki, które absorbują wilgoć chętnie (odpady roślinne, papier) oraz składniki, które nie wchłaniają wody (metale, szkło i tworzywa sztuczne). Ponadto, złoże jest materiałem porowatym, w którym występują puste przestrzenie powietrzne i pory, przez które woda może płynąć. W efekcie woda może osiągnąć dno składowiska na długo przed uzyskaniem polowej pojemności wodnej przez całą objętość odpadów.

Bardzo duży wpływ na ilość powstających odcieków ma szybkość i sposób formowania hałdy odpadów. Większe ilości odcieków powstają na składowiskach o słabozgęszczanych odpadach, w których szybkość infiltracji jest stosunkowo duża, natomiast mniejsze na składowiskach o silnie zgęszczonych odpadach, o niższym współczynniku infiltracji.

Zawartość wilgoci w odpadach na składowisku waha się od 0.052 do 0.204 m/m, z wartością średnią 0.165 m/m (tabela 1) [64]. Polowa pojemność wodna odpadów waha się od 0.283 do 0.404 m/m, ze średnią wartością 0.338 m/m. W ciągu pierwszych lat eksploatacji składowiska, część opadów będzie, zatem absorbowana lub magazynowana w odpadach. W konsekwencji wyższe ilości odcieków mogą być oczekiwane wraz ze wzrostem "wieku" odpadów. Opóźnienie w pojawieniu się odcieków może wynosić pół roku lub dłużej od chwili zdeponowania odpadów na składowisku. Odcieki mogą też pojawić się natychmiast po złożeniu odpadów na składowisku, jeżeli porowatość złoża jest bardzo duża. Różnica między rzeczywistą wilgotnością i pojemnością wodną odpadów komunalnych nazywana jest potencjalną zdolnością przyjmowania wody. Ten potencjał zależy od gęstości odpadów (tabela 1).

Wymagany czas dla osiągnięcia polowej pojemności wodnej przez odpady komunalne złożone na składowisku, obliczony w oparciu o wartości podane w tabeli 1, wynosi klika lat.

Gęstość odpadów mokrych, kg/m ³	Gęstość odpadów suchych, kg/m ³	Początkowa wilgotność odpadów, m/m	Polowa pojemność wodna, m/m	Potencjalna zdolność przyjmowania wody, m/m
Odpady niezagęszczone	-	-	0.100	-
Odpady zagęszczone	-	-	0.350	-
315	-	0.160	0.302	0.142
339	-	0.210	0.310	0.100
384	-	0.164	0.294	0.130
391	303	0.083	0.367	0.284
394	283	0.052	0.342	0.290
408	-	0.192	0.325	0.133
410	-	0.204	0.346	0.142
430	314	0.117	0.325	0.208
474	309	0.165	0.404	0.239
476	310	0.166	0.368	0.202
480	312	0.167	0.318	0.151
596	406	0.192	0.375	0.183
622	-	0.150	0.283	0.133
625	-	0.167	0.375	0.208

Tabela 1. Gęstości i pojemności wodne odpadów [29]

Fungaroli i Steiner [29] stwierdzili w badaniach lizymetrycznych, że w pierwszym roku doświadczeń odcieki praktycznie nie powstawały, a po 3 latach ich ilość była zbliżona do ilości wody wprowadzanej do lizymetru (rys. 2).

Rys. 2. Przebieg zmian ilości wody wprowadzanej do lizymetrów 1 powstających odcieków w czasie 1700 dni trwania doświadczeń [29]

Doświadczenia eksploatacyjne na składowiskach wykazują, że duże ilości odcieków są wytwarzane po okresie od 1 do 2 lat od złożenia odpadów [47], co potwierdza infiltrację znacznej części wody w złożu odpadów w specjalnych kanałach. Te zjawiska generalnie nie są włączane do modelowych bilansów wodnych, w których zakłada się tłokowe przemieszczanie odcieków.

2.3.1. Modele obliczeń ilości odcieków

Do obliczeń ilości powstających odcieków najszerzej stosowane są modele WMB (Model Water Balance Method) [24] i HELP (Model Hydrologic Evaluation of Landfill Performance) [92, 112], które najlepiej sprawdzają się podczas symulacji produkcji odcieków zarówno dla krótko, jak i dla długoterminowych prognoz.

W obu tych modelach bilansowanie masy wody w warstwie powierzchniowej jest podobne i opiera się na zasadzie zachowania masy, a stosowane metody obliczenia SP, ET i RET (rzeczywista ewapotranspiracja) są zbliżone. Różnice między podejściami wynikają z przyjętych założeń technicznych i rachunkowej sofistyki opisania licznych procesów determinujących migrację wody w składowisku (rys. 1). W modelu WBM bilans wodny został organiczny do powierzchniowej warstwy złoża. Założono też, że cała ilość wody infiltrująca do odpadów staje się ostatecznie odciekami. W modelu HELP natomiast, szczegółowo analizowana jest ogólna równowaga wodna składowiska nie tylko w warstwie powierzchniowej, ale również podczas przemieszczania się odcieków przez całe złoże odpadów, aż do momentu ich odprowadzenia ze składowiska drenażem odwadniającym. W obu modelach założono, że odpady w złożu są jednorodne. W rzeczywistości odpady na składowiska są bardzo zróżnicowane, a zatem modele są prawdziwe jedynie w pewnych obszarach składowisk. Jednakże, z wiekiem składowiska odpady mogą stawać się coraz bardziej jednorodne.

Model WBM

Model WBM został opracowany w 1940 roku dla kwantyfikacji ewapotranspiracji. Ogólny model wymiany wody między warstwą przykrywającą, odpadami i atmosferą sformułował Kemmerling [44]. Procedurę obliczeń ilości wody usuwanej z gleby w wyniku ewapotranspiracji opracowali Thornthwaite i Mather [104]. Została ona oparta na wynikach badań polowych prowadzonych przez 25 lat w celu określenia potrzeb nawadniania w rolnictwie. Ta oryginalna praca została republikowana przez Fenn'a Hanley'a i DeGeare'a [24] i przedstawiona jako metoda do obliczeń szybkości pojawiania się przecieków na składowiskach odpadów. Wyniki badań i procedura obliczeń zaproponowane przez

Thorenthwaite'a i Mather'a zostały zweryfikowane doświadczalnie w pomiarach polowych przeprowadzonych w różnych rejonach świata przez Kemt'a [47].

Ilość odcieków w modelu WBM wyznacza się z równania:

$$IO_t = O_t - RET_t - SP_t - \Delta PW_t \tag{15}$$

gdzie: RET – rzeczywista ewapotranspiracja, której wartość zależy od ilości wody dostępnej w warstwie powierzchniowej, indeks t - kolejny miesiąc roku.

Model został opracowany dla bilansowania ilości odcieków w cyklu miesięcznym, stosowanie jego dla krótszych przedziałów czasu nie jest zalecane.

Opinie o dokładności obliczeń ilości odcieków w oparciu o procedury modelu WBM są podzielone. Lu i inni [60] używając modelu WBM określili ilości wytwarzanych odcieków dla pięciu składowisk, o różnych lokalizacjach, reprezentujących różne geograficzne obszary i warunki klimatyczne, i porównywali je z wynikami pomiarów ilości odcieków na tych obiektach. Błąd obliczeń sięgał od 1.32 do 0.54%. Z kolei Gee (za McBean i inni [64]) wykonując podobne obliczenia, wykazał błąd na poziomie 94%.

Kempa i inni [45] adaptując procedury WBM do warunków klimatycznych Polski, opracowali program komputerowy obliczenia bilansu wodnego w warstwie przekrywającej odpady. Wykorzystując program obliczono ilości odcieków, które powstają na składowiskach otwartych zlokalizowanych w różnych rejonach Polski. Przyjęto następujące założenia:

- w warunkach środkowoeuropejskich, z zagęszczonych odpadów lub gruntu przekrywającego odpady, w sezonie suchym, paruje maksymalnie 18-20 mm wody, (wyższe parowanie jest niemożliwe ze względu na zbyt mały wzrost kapilarny, nawet podczas długich okresów suchych);
- o spływ powierzchniowy nie występuje;
- w okresie zimowym opad śniegu topi się w ciągu kilku dni (poza rejonami miast Suwałk i Białystoku, dla których przyjęto, że 100% pokrywy śnieżnej topi się w miesiącu kwietniu oraz miastami Kłodzko i Nowy Sącz - marzec 80%, kwiecień 20%).

Na rysunku 3 przedstawiono obszary na terenie kraju o jednakowych, średnich miesięcznych wskaźnikach ilości powstających odcieków.

Najwięcej odcieków powstaje w makroregionach: Nadmorskim ($Q_{\text{śred.m.}} = 15.4-20.8 \text{ dm}^3/\text{m}^2$), Wyżyny Kileleckiej ($Q_{\text{śred.m.}} = 17.0 \text{ dm}^3/\text{m}^2$) oraz Beskidu Zachodniego ($Q_{\text{śred.m.}} = 16.5 \text{ dm}^3/\text{m}^2$), a najmniej w makroregionach: Niziny Północnomazowieckiej ($Q_{\text{śred.m.}} = 10.2-10.8$ dm^3/m^2) oraz Niziny Południowowielkopolskiej i podprowincji Niziny Śląskiej ($Q_{\text{śred.m.}} = 8.6$ -12.9 dm^3/m^2).

Rys. 3. Średnie miesięczne objętości odcieków dla lokalizacji na terenie Polski

Model HELP

Model HELP jest oparty na tych samych podstawach hydrologii jak model WBM, ale obliczenia są dużo bardziej szczegółowe. W odróżnieniu od modelu WBM pozwala on :

- badać przepływy wody przez pełny pionowy profil składowiska: warstwę zewnętrzną, hałdy odpadów (wariantowo przez warstwę powierzchniową oraz warstwy zamykające i rekultywacyjne składowiska z drenażem podpowierzchniowym), złoże odpadów oraz warstwę przydenną (drenaż odwadniający złoże z ekranem uszczelniającym);
- zbilansować opady, spływ powierzchniowy, ewapotranspirację, pionowe sączenie i odpływy drenażami w przekroju dna;
- o obliczać ilości odcieków odprowadzane drenażami pod warstwę zamykającą i w dnie składowiska.

Obliczenia ilości odcieków z wykorzystaniem procedur opartych na modelu HELP wymagają dużej liczby danych, zwłaszcza o gruntach warstwy przykrywającej odpady, roślinności tworzącej jej zabudowę biologiczną oraz o składowisku (tabela 2).

Kategoria	Parametry szczegółowe	Model WBM	Model HELP
	Opady dzienne	+	+
Dane klimatyczne	Średnie miesięczne nasłonecznienie	-	+
	Średnie miesięczne temperatury	+	+
	Przepuszczalność hydrauliczna w gruncie nasyconym	-	+
	Porowatość gruntu	-	+
	Współczynniki parowania	-	+
Dane o gruntach	Polowa pojemność wodna	+	+
Dane o gruntaen	Punkt więdnięcia	+	+
	Minimalna szybkość infiltracji	-	+
	Współczynniki spływu powierzchniowego	+	+
	Początkowa zawartość wody, m/m	-	+
	Rodzaj roślinności	-	+
Dane o zabudowie	Wskaźnik zabudowy powierzchni	-	+
biologicznej	Indeks powierzchni liści	-	+
biblogicznej	Głębokość strefy korzeniowej	+	+
	Grubość pokrywy śniegowej	+	+
	Liczba warstw gruntów i odpadów	+	+
	Grubość warstw	+	+
	Nachylenie warstw	+	+
Dane o	Szerokość pola odwadnianego drenażem	-	+
składowisku	Powierzchnia wierzchowiny odpadów	+	+
	Wskaźnik przenikania przez syntetyczne przegrody		
	(wartość od 0 do 1)	-	+
	Współczynnik spływu powierzchniowego w odpadach	-	+

Tabela 2. Parametry wymagane do obliczania ilości odcieków z wykorzystaniem procedur opartych na modelach WBM i HELP

+ dane wymagane w procedurze obliczeniowej

Kalibrowanie i weryfikacja modelu HELP była prowadzona w kilku różnych lokalizacjach [79]. Ogólnie, opinie były pozytywne. Dokładność oszacowania ilości odcieków odprowadzanych drenażem w porównaniu z pomiarami była wysoka. Błąd oszacowania dziennych ilości odcieków dla eksploatowanych składowisk wahał się od 29 do 138%, a dla składowisk zamkniętych i zrekultywowanych od 29 do 33%. Pozwala to traktować uzyskiwane wyniki jako użyteczne wytyczne w projektowaniu składowisk odpadów.

Program jest nadal rozwijany, a jego wersja 3.07 jest dostępna odpłatnie na stronie internetowej <u>http://el.erdc.usgu.army.mil</u>.

2.3.2. Produkcja odcieków w warunkach rzeczywistych

Najwyższe objętości odcieków powstają w okresach intensywnych opadów atmosferycznych w miesiącach od listopada do kwietnia, z maksymalnymi wartościami przypadającymi w grudniu oraz podczas nawalnych deszczy. Według Hjelmar'a i innych [37] produkcja odcieków w zależności od lokalizacji klimatycznej składowiska waha się w przedziale od 50 do 400 mm/rok (Włochy - 82 mm/rok, Grecja – 40 - 60 mm, Hiszpania - 70 mm/rok).

Kemt [47] ustalił ilości odcieków dla składowisk stałych odpadów komunalnych w stanie Wisconsin dla różnych okresów eksploatacji: od 250 do 750 mm/rok (od 30 do 100% rocznego opadu) i po zamknięciu składowiska okrywą z gruntu mineralnego i biologicznym jej zabudowaniu: od 50 do 150 mm/rok (od 7 do 20% rocznego opadu).

Natomiast Canziani i Cossu [9], Stegman i Ehring [17] oraz Hjemar i inni [37] wykazali, że maksymalne wartości kształtują się w zakresie od 50 do 60% rocznego opadu. Rozrzut wartości okazuje się bardzo duży. Jest to zgodne z oczekiwaniem, ponieważ różne były warunki klimatyczne lokalizacji badanych składowisk, typ i grubość okrywy z gruntu, nachylenia powierzchni, pokrywa i techniki eksploatacji.

Na rysunku 4 przedstawiono odpływ odcieków z różnych składowisk (północna część Niemiec) jako procent opadu (składowiska eksploatowane i zrekultywowane) [17]. Każdy słupek reprezentuje jedno składowisko. Zmierzona ilość odcieków, poza czterema składowiskami, waha się od 12.2 do 21.6%, średnio 17.9% wartości rocznego opadu. Wartości niższe niż 10% stwierdzono w bardzo młodych składowiskach. Dwie wartości powyżej 25% nie są wartościami pewnymi. Generalnie obserwowana była prawidłowość, że po 150 tygodniach pomiarów (wiek składowisk 5.5 lat) odpływ odcieków wzrastał skokowo i pozostawał na wysokim poziomie.

2.4. Skład fizyko-chemiczny odcieków z odpadów przed i po mechaniczno biologicznym przetworzeniu

2.4.1. Mechaniczno-biologiczne przetwarzanie odpadów

Termin mechaniczno-biologiczne przetwarzanie odpadów (MBP) obejmuje procesy: rozdrabniania, przesiewania, sortowania, klasyfikacji i separacji, które są ustawione w różnorodnych konfiguracjach w celu mechanicznego rozdzielenia strumienia odpadów na frakcje dające się w całości lub w części wykorzystywać materiałowo lub/i energetycznie oraz na frakcję ulegającą biodegradacji odpowiedniej do biologicznego przetwarzania w warunkach tlenowych lub beztlenowych.

Rys. 4. Wielkość opadów (mm/a) i ilości odcieków (w mm/a i % opadów) dla kilkunastu składowisk, o rożnym wieku [17]

Procesy MBP są stosowane do przetwarzania zmieszanych (nie segregowanych) odpadów komunalnych, z których uprzednio wyselekcjonowano odpady nadające się do wykorzystania (surowce wtórne) oraz odpadów pozostałych (odpady komunalne pozostające po wydzieleniu z nich odpadów ulegających biodegradacji w ramach ich selektywnego zbierania). Technologie MBP, w obecnym kształcie zostały opracowane w Niemczech w drugiej połowie lat 90-tych [41].

Po wejściu w życie Dyrektywy o składowaniu odpadów 1999/31/WE technologie MBP są rozwijane i realizowane w celu wypełnienia obowiązku ograniczenia ilości składowanych odpadów ulegających biodegradacji nałożonego na kraje członkowskie Unii Europejskiej w artykule 5, w tym dokumencie. W niektórych krajach europejskich (Austrii, Niemczech, Holandii i Dani) krajowe strategie prowadzące do zmniejszenia ilości składowanych odpadów ulegających biodegradacji sprowadzają się do całkowitego zakazu ich składowania bez przetwarzania.

Ogólny schemat przebiegu procesu mechaniczno-biologicznego przetwarzania odpadów komunalnych (BPOK) przedstawiono na rysunku 5 [71].

EM – elektromagnes W_o – ciepło spalania **Rys. 5.** Ogólny schemat procesu MBP [71]

Biologiczne przetwarzanie biofrakcji może być prowadzone w warunkach tlenowych (kompostowanie) lub beztlenowych (fermentacja) [94]. Technologie beztlenowe (mimo, że wykazują szereg zalet w porównaniu z kompostowaniem) są mniej zalecane do przetwarzania biofrakcji, szczególnie w krajach rozwijających się ze względu na wysokie koszty inwestycyjne i eksploatacyjne [27] (tabela 3).

Tabela 3. Koszty inwestycyjne i	eksploatacyjne p	ponoszone	podczas	tlenowej	i beztlenowej
stabilizacji odpadów [27]					

Wskaźniki	Procesy tlenowe	Procesy beztlenowe
Koszty inwestycyjne – kraje rozwijające się, US\$/Mg	10 - 30	80 - 220
Koszty inwestycyjne – Niemcy, US\$/Mg	40 - 100	250 - 450
Koszty eksploatacyjne – kraje rozwijające się, US\$/Mg	8 - 12	15 - 30
Koszty eksploatacyjne – Niemcy, US\$/Mg	20 - 30	> 50

W tych krajach zaleca się stosować procesy o mniejszych wymaganiach technicznych (instalacje tlenowe), które pozwalają osiągnąć wytyczone cele, przy niższych kosztach inwestycyjnych i eksploatacyjnych.

2.4.2. Skład chemiczny odcieków ze ZOK i z BPOK

Skład chemiczny odcieków z miejskich składowisk nieprzetworzonych odpadów komunalnych jest dobrze udokumentowany, a procesy zachodzące w złożu odpadów stosunkowo dobrze rozpoznane [10, 12, 84, 89, 90, 102]. Krümpelbeck i Ehring [51] analizując zmiany składu chemicznego odcieków ze składowisk odpadów komunalnych w Niemczech, w okresie 30 lat, stwierdzili, że wartości ChZT w okresie pierwszych 10 lat składowania ZOK zmieniały się nieznacznie (biorąc pod uwagę wartości środkowe) (tabela 4). Dopiero mediana z okresu 11-20 lat składowania była o około 50% niższa niż wartości środkowe z okresu 1-5 lat.

Wybrane wskaźniki jakości		Wartości wskaźników dla odcieków ze składowisk w różnym wieku			
	1-5 lat	6-10 lat	11-20 lat	21-30 lat	
	max.	22700	22500	29150	6997
ChZT, mg O_2/dm^3	mediana	3810	3255	1830	1225
	min.	303	194	120	123
	max.	16000	64880	25800	1100
BZT_{5} , mg O_2/dm^3	mediana	2285	1210	465	290
	min.	106	20	10	12
	max.	7000	2360	2870	1571
Azot amonowy,mg/dm ³	mediana	405	600	555	445
	min.	18	71	33	66
	max.	11950	28000	13000	2880
Chlorki, mg/dm ³	mediana	1300	2135	1760	1025
	min.	140	172	154	157

Tabela 4. Wybrane wskaźniki jakości odcieków z nieprzetworzonych odpadów komunalnych ze składowisk niemieckich [51]

Odmiennie do ChZT przebiegały zmiany wartości BZT_{5.} W porównaniu do wartości środkowej z okresu 1-5 lat wartość mediany z okresu 6-10 lat była niższa o około 50%, a wartość środkowa z okresu 11-20 lat aż o 80%.

Wartości środkowe stężenia azotu amonowego i chlorków w wyróżnionych okresach w ciągu 30 lat składowania odpadów zmieniały się skokowo; w okresie 6-10 lat składowania były wyraźnie wyższe od median ustalonych dla okresu 1-5 lat, a w kolejnych okresach wyraźnie niższe.

W tabeli 5 przedstawiono skład chemiczny odcieków z BPOK w początkowej fazie składowania pochodzących ze składowiska odpadów w Lünenburgu, z beztlenowych reaktorów laboratoryjnych oraz ze ZOK, które znajdowały się w dwóch fazach beztlenowego rozkładu: w fazie acidogennej i metanogennej [89].

Tabela 5. Skład chemiczny odcieków ze składowiska odpadów po MBP w Lüneburgu, z reaktorów laboratoryjnych oraz ze zmieszanych odpadów komunalnych w różnych fazach stabilizacji [89]

Wskaźniki zanieczyszczeń	Odpady po MBP, Lünenburg – początkowa faza składowania	Odpady po MBP, skala laboratoryjna – początkowa faza składowania	ZOK – faza acidogenna	ZOK – faza metanogenna	
pН	7.5	7.0 - 7.5	4.5-7.5	7.5 - 9.0	
ChZT, mg O_2/dm^3	700 - 2500	2000 - 2400	6000 - 60000	500 - 4500	
OWO, mg/dm ³	300 - 950	-	2000 - 30000	200 - 2000	
BZT ₅ , mg O_2/dm^3	1 – 55	100 - 1100	4000 - 40000	20 - 550	
ChZT/ BZT ₅	20-150	2 - 20	2	15 - 20	
TKN, mg/dm^3	10 - 37	-	1350	1350	
NH_4 , mg/dm ³	0 - 27	90 - 130	750	750	
NO ₃ , mg/dm^3	15 - 66	-	-	-	
NO ₂ , mg/dm ³	0.1 - 1.7	-	-	-	
$N_{nieorg.}, mg/dm^3$	16 – 75	-	750	750	
$N_{og {o}lny,} mg/dm^3$	35 - 140	200 - 250	1350	1350	
ChZT/Nogólny	4.6 - 8.7	10	8-12	2 - 3	
AOX, mg/dm^3	0.1 - 0.9	-	0.3 - 3.4	0.3 - 3.4	

Stężenia zanieczyszczeń w odciekach z BPOK były zbliżone do stężeń w odciekach ze ZOK w fazie metanogennej i znacznie niższe niż stężenia stwierdzane w odciekach ze ZOK w fazie acidogennej.

Wyniki badań prezentowane przez Robinsona i innych [89] (tabela 5) są zgodne z obserwacjami Leikam'a i Stegmann'a [57], którzy porównywali skład chemiczny odcieków pochodzących z odpadów nieprzetworzonych i biofrakcji ustabilizowanej tlenowo. Stwierdzili oni, podobnie jak u Robinsona i innych, brak fazy acidogennej w złożu odpadów po kompostowaniu, która charakteryzowała się wysokimi stężeniami zanieczyszczeń oraz spadkiem wartości ChZT w odciekach poniżej 1000 mg O_2/dm^3 (BZT₅ <20 mg O_2/dm^3) już w 250 dniu pomiarów (rys. 6).

Ponadto stwierdzili, że biologiczne przetwarzanie odpadów przyczyniło się do spadku stężenia azotu ogólnego w odciekach (szczególnie azotu amonowego) do wartości około 200 mg/dm³ po 250 dniach, podczas gdy w odciekach z nieprzetworzonej biofrakcji strumień azotu amonowego utrzymywał się na poziomie około 1000 mg/dm³.

Rys. 6. Wartości ChZT, BZT5 oraz stężenia azotu ogólnego w odciekach z biofrakcji nieprzetworzonej (B) i po kompostowaniu (B po MBP) - testy laboratoryjne (iloraz; objętości odcieków/masy odpadów, w 400 dniu wyniósł 1.6/1, a 700 dniu – 2.6/1) [57]

Stopień redukcji substancji organicznych podczas biologicznego przetwarzania odpadów zależy od czasu i intensywności ich napowietrzania (tabela 6), od podatności na rozkład oraz od warunków prowadzenia procesu opisywanych takimi parametrami jak: wilgotność i temperatura odpadów w złożu składowiska [28, 94, 95].

Rodzaj instalacji		Czas trwania stabilizacji tlenowej (tygodnie) w zależności od osiągniętego stopnia rozkładu substancji					
	10%	20%	30%	40%	50%	60%	
Statyczna pryzma		31	46	59	-	-	
Statyczna pryzma ciąg kominowy		18	31	47	-	-	
4 tygodnie napowietrzania sprężonym powietrzem + dojrzewanie w pryzmie statycznej		8.5	17	32	-	-	
8 tygodni napowietrzania sprężonym powietrzem + dojrzewanie w pryzmie statycznej		3	4	6	9	21	
16 tygodni napowietrzania sprężonym powietrzem + dojrzewanie w pryzmie statycznej		3.5	5	9	16	31	

Tabela 6. Uśrednione całkowite czasy trwania stabilizacji tlenowej (tygodnie) dla osiągnięcia określonych stopni rozkładu (zmniejszenia zawartości) substancji organicznej [28]

Według Spendlina [96] w optymalnych warunkach tlenowej stabilizacji 90% poziom rozkładu można już uzyskać po 20 dniach napowietrzania (rys. 7).

Höring i inni [38] wyznaczyli wskaźniki emisji węgla organicznego w gazie składowiskowym i odciekach oraz ładunki azotu ogólnego i chlorków usunięte w odciekach ze ZOK i z BPOK z reaktorów laboratoryjnych [38] (tabela 7).

Rys. 7. Redukcja ChZT w przekompostowanych odpadach komunalnych stabilizowanych tlenowo przez okres 100 dni w zależności od czasu intensywnego napowietrzania [96]

Tabela 7. Ładunki zanieczyszczeń usuwane w gazie składowiskowym i odciekach ze ZOK i BPOK [38]

Ładunki zanieczyszczeń emitowane w biogazie i odciekach	Jednostki	ZOK	BPOK
Węgiel emitowany w gazie	dm ³ /kg sm	134 - 233	12 - 50
składowiskowym	gC _{org} /kg sm	71.7 - 24.7	6.4 - 26.8
Ładunek emitowany w odciekach:			
OWO	g/kg sm	8 - 16	0.3 - 3.3
Azot ogólny	g/kg sm	4 - 6	0.6 - 2.4
Chlorki	g/kg sm	4 - 5	4 - 6

Autorzy stwierdzili, że emisje zanieczyszczeń z BPOK były kilkakrotnie niższe niż z odpadów nieprzetworzonych, co było wynikiem braku łatwo ulegających rozkładowi substancji organicznych w tych odpadach. W odpadach po efektywnym procesie MBP pozostają tylko trudno rozkładalne substancje organiczne (ligniny, woski, kwasy humusowe), których rozkład jest długotrwały i wymaga rozwoju odpowiedniej populacji mikroorganizmów. Niska zawartość substancji organicznych łatwo ulegających rozkładowi w BPOK prowadzi do bardzo niskiej produkcji gazu i powolnego uwalniania substancji organicznej i azotu do odcieków.

Według badań Stegmann'a [99] intensywne kompostowanie odpadów pozwala na zmniejszenie emisji gazu składowiskowego, przy dobrze prowadzonym procesie kompostowania (16-30 tygodni), nawet o 80-90% w stosunku do jego emisji z odpadów nieprzetworzonych, podobnie jak azotu. Koresponduje to ze spadkiem produkcji ilości wytworzonego biogazu nawet do 15-20 m³/Mg BPOK, podczas gdy typowa produkcja biogazu ze ZOK wynosi 165 m³/Mg [88].

Badania przeprowadzone przez Höring'a i innych [38] wykazały, że czas półtrwania aktywności gazowej złoża odpadów zmniejsza się 10-krotnie dla dobrze ustabilizowanych odpadów komunalnych (rys. 8). Autorzy badań stwierdzili również, że produkcja biogazu w nieprzetworzonych odpadach komunalnych po około 150 dniach stabilizacji gwałtownie rośnie, a następnie po 200 dniach badań (co odpowiada współczynnikowi L/S 1:1), spada i osiąga szybkość produkcji gazu stwierdzonej dla odpadów przetworzonych (rys. 8). Omawiane badania prowadzono w skali laboratoryjnej przez okres 600 dni przy stosunku L/S od 2 do 3. Odpowiadało to rzeczywistemu czasowi rozkładu odpadów na składowisku równemu ponad 100 lat.

Rys. 8. Produkcja biogazu z odpadów nieprzetworzonych i przetworzonych biologicznie: - ZOK,

- BPOK 1 (16 tygodni w otwartych komorach napowietrzanych),

- BPOK ZOK 2 (14 dni beztlenowej stabilizacji i 12 tygodni napowietrzania w kontenerach) [38]

W tabeli 8 przedstawiono skład chemiczny odcieków z odpadów nieprzetworzonych i z biofrakcji ustabilizowanej tlenowo w różnych technologiach kompostowania [15]. Autorzy wykazali, że pomiędzy czasem trwania poszczególnych faz kompostowania, a uzyskanym efektem poprawy jakości odcieków nie ma prostej zależności.
Parametry	Biofrakcja	cja Biofrakcja stabilizowana tlenowo				
Kompostowanie intensywne, tygodnie	0	4	4	2	16	3
Dojrzewanie, tygodnie	0	9	43	1	8	19
ChZT, mg O_2/dm^3	172000	2780	1170	540	4000	1900
BZT_5 , mg O_2/dm^3	123000	52	9	158	111	14
NH4, mg/dm ³	3965	197	11	56	292	340
Chlorki, mg/dm ³	9100	11300	6900	5700	6200	4100
Chrom, mg/dm ³	0.41	0.14	0.04	0.03	0.21	0.09
Nikiel, mg/dm ³	2.10	0.23	0.71	0.16	0.40	0.09
Miedź, mg/dm ³	1.41	0.71	0.80	0.28	0.52	0.18
Cynk, mg/dm ³	102	3.4	1.0	0.22	1.6	0.2

Tabela 8. Stężenia zanieczyszczeń w odciekach z biofrakcji nieprzetworzonej i po kompostowaniu [15]

Stężenie azotu amonowego w odciekach z odpadów intensywnie kompostowanych przez 2 tygodnie było ponad 5-kortnie niższe niż w odciekach z odpadów intensywnie kompostowanych przez 16 tygodni, a stężenie ChZT, aż 7 krotnie.

Pozwala to stwierdzić, że poza czasem trwania kompostowania znaczący wpływ na jakość odcieków mają również: pochodzenie odpadów poddawanych kompostowaniu, zakres selektywnego zbierania oraz zastosowana technologia przetwarzania mechanicznego.

Brinkmann i inni [7] uzyskali redukcję emisji w odciekach zanieczyszczeń organicznych reprezentowanych przez OWO i azotu amonowego o 80-90% po 25 tygodniach intensywnego napowietrzania. Po pięciu tygodniach intensywnego kompostowania redukcja tych zanieczyszczeń była mniej znacząca. W tych i większości innych badań nie odnotowywano wpływu napowietrzania na redukcję usuwanego ładunku chlorków [7, 15, 71], (rys. 9).

Na podstawie zaprezentowanych wyników badań można stwierdzić, że dostatecznie intensywnie kompostowanie odpadów, niezależnie od ich rodzaju przetwarzania oraz zastosowanych rozwiązań technologicznych procesu MBP, pozwala na zmniejszanie emisji zanieczyszczeń organicznych i azotu w odciekach nawet o 80-90%, a jeżeli proces kompostowania odpadów przed składowaniem będzie przeprowadzony z pełną fazą dojrzewania produkcja gazu na składowisku może okazać się na tyle mała, że odgazowanie złóż będzie nie potrzebne.

Iloraz: objętość odcieków / suchej masy odpadów

Legenda:

- B biofrakcja frakcja< 60 mm odsiana z odpadów pozostałych po ich rozdrobnieniu w młynie młotkowym i usunięciu metali na separatorze magnetycznym,
- ° B po MBP1 B po 35-dniowym intensywnym kompostowaniu w pryzmach z wymuszonym napowietrzaniem,
- ° B po MBP2 B po 25 tygodniach intensy6wnego kompostowania biologicznego.

Rys. 9. Wskaźniki masowe emisji zanieczyszczających w odciekach z odpadów w różnym stopniu przetworzonych w zależności od wartości ilorazu objętość odcieków/sucha masa odpadów. Strzałki pokazują początek wytwarzania gazu [7]

2.4.3. Skład chemiczny odcieków z monoskładowisk BPOK

Informacje o składzie odcieków z dużych monoskładowisk BPOK są stosunkowo nieliczne. Zwykle BPOK składowane są na składowiskach wspólnie z innymi nieprzetworzonymi odpadami komunalnymi, przemysłowymi oraz pochodzącymi z działalności handlowousługowej.

Robinson i inni [89] przeprowadzili w styczniu i lipcu 2002 dwie serie badań odcieków z 7 dużych składowisk zlokalizowanych w różnych krajach europejskich, na których udział BPOK w strumieniu składowanych odpadów był większy niż 50 i 90% (tabela 9).

Wyniki badań przedstawione w tabeli 9 potwierdziły wnioski sformułowane na podstawie badań wykonywanych w skali laboratoryjnej. Składowanie w pełni ustabilizowanych odpadów znacznie obniża ich bioreaktywność w złożu na składowisku, i w konsekwencji stężenia zanieczyszczeń w odciekach są wielokrotnie niższe niż w odciekach z odpadów nieprzetworzonych. Wartości BZT₅ mogą być niższe niż 10 mg O₂/dm³ zarówno w odciekach z odpadów składowanych tylko kilka miesięcy, jak i kilka lat. Azot amonowy może występować w odciekach w ilościach typowych dla ścieków miejskich (< 40 mg/dm³), a nawet w stężeniach <5 mg/dm³ w przypadku bardzo efektywnych technologii kompostowania. Problemem pozostają stosunkowo wysokie wartości ChZT (około 1000 mg

O₂/dm³ lub wyższe) stwierdzane w odciekach z BPOK nawet po bardzo efektywnych procesach kompostowania.

Parametry	Biofrakcja	Biofrakcja ustabilizowana tlenowo					
Wiek składowiska, lata	> 5	> 5	> 5	> 5	<5	<5	<5
Udział odpadów po MBP, %	0	>50	>90	>50	>90	>90	>90
Proces kompostowania		PS	PS	PP	PP	K	K+P
Czas intensywnego kompostowania, tygodnie	0	0	0	0	0	16	2
Czas dojrzewania, tygodnie	0	12	30	25	8	0	30
ChZT, mgO ₂ /dm ³	15590	582	4670	228	1620	869	1020
BZT_5 , mgO ₂ /dm ³	4240	46	202	3	35	6	3
OWO, mg/dm ³	4694	180	1480	78	543	308	340
Kwasy tłuszczowe (jako C)	707	<20	<10	<20	<10	<10	<10
Azot amonowy, mg/dm ³	4024	195	1130	286	197	342	1.8
Siarczany, mg/dm ³	423	433	117	18	449	414	878
Chlorki, mg/dm ³	6000	612	2270	384	2290	901	1090
Przewodność właś., mS/m	3940	496	1400	321	954	486	590
Zasadowość, mg CaCO ₃ /dm ³	1740	879	6120	1100	2010	1670	895
pH	8.3	8.1	8.3	7.9	7.9	8.4	8.5
Chrom, µg/l	13100	110	870	<50	<250	<250	<250
Nikiel, µg/l	<100	30	210	<10	<50	<50	<50
Miedź, µg/l	<1	<1	<1	<1	<1	<10	<1
Cynk, µg/l	174	115	1032	<5	232	225	705

 Tabela 9. Skład chemiczny odcieków z dużych składowisk BPOK [88]

PS - kompostowanie w pryzmach statycznych z wymuszonym napowietrzaniem, K - kompostowanie w kontenerach, K+P - kompostowanie intensywne w kontenerach i dojrzewanie w pryzmach, PP - kompostowanie w pryzmach przerzucanych

Interesującym zagadnieniem, wynikającym z tych badań są wysokie stężenia siarczanów w odciekach z BPOK, wyższe niż stwierdzane w odciekach ze składowisk zmieszanych odpadów komunalnych. W złożu biofrakcji z wpracowaną matanogenezą, siarczany są redukowane do siarczków, które wytrącają się w postaci trudnorozpuszczalnych siarczków żelaza lub innych metali. W odciekach z badanych składowisk z BPOK siarczany występowały w stężeniach kilkuset mg/dm³, co może wskazywać na brak silnie beztlenowych stref w złożu odpadów. Negatywnym tego skutkiem może być wzrost stężenia metali ciężkich w odciekach (wysokie stężenia cynku - tabela 9).

2.5. Intensyfikowanie procesów przebiegających na składowiskach

Wielkość emisji zanieczyszczeń ze składowiska można efektywnie zmniejszyć poprzez stosowanie odpowiednich technik eksploatacyjnych, które mają na celu intensyfikację procesów biochemicznych przebiegających w złożu odpadów. Znane techniki służące do

kontroli i intensyfikacji procesów przebiegających na składowiskach polegają na: zwiększeniu wilgoci odpadów poprzez recyrkulację odcieków, rozdrabnianiu odpadów, kontroli pH, dodawaniu pożywek substratowych, szczepieniu odpadów osadami ściekowymi oraz na kontroli i sterowaniu temperaturą złoża [20, 33]. Wymierną korzyścią ich stosowania jest zmniejszenie czasu emisji zanieczyszczeń w odciekach i gazie składowiskowym.

Najczęściej stosowaną techniką intensyfikacji procesów na składowiskach jest recyrkulacja odcieków. Poprawia ona warunki rozkładu odpadów oraz jest efektywną metodą zagospodarowywania i oczyszczania odcieków. Udokumentowane korzyści jej stosowania to [68, 72, 87, 107, 108]:

- o zmniejszenie objętości odcieków kierowanych do oczyszczania,
- o poprawa jakości odcieków,
- o zwiększenie szybkości produkcji biogazu,
- przyśpieszenie osiadania złoża odpadów, co prowadzi do zwiększenia dyspozycyjnej pojemności składowiska.

Zasadnicze przemiany zachodzące na składowiskach z recyrkulacją odcieków są podobne do beztlenowych procesów przebiegających na składowiskach tradycyjnych. W złożach odpadów stabilizowanych z recyrkulacją, kolejne fazy ich stabilizacji są prowadzone intensywniej i w sposób bardziej kontrolowany niż na składowiskach bez recyrkulacji [78]. Recyrkulacja zwiększa wilgotność odpadów, obniża stężenie potencjalnych inhibitorów metanogenezy [67] oraz dostarcza substancje odżywcze i enzymy niezbędne dla rozwoju mikroorganizmów [97]. Efektem jej jest przyspieszenie rozkładu organicznych składników odpadów, wzrost produkcji metanu [93] oraz usunięcie części zanieczyszczeń zawartych w recyrkulowanych odciekach.

Oczyszczanie zawracanych odcieków wewnątrz składowiska zachodzi najefektywniej w stabilnej fazie fermentacji metanowej, w której substancje organiczne obecne w odciekach wykorzystywane są do produkcji biogazu, a metale ciężkie są immobilizowane [87].

Według Pohland'a i Kim'a [81] czas wpracowania fazy metanogennej na składowiskach z recyrkulacją odcieków jest 2-3 krotnie krótszy niż na składowiskach bez recyrkulacji. Stężenia LKT osiągają niskie, stałe zakresy wartości po upływie 1 roku, a ChZT po około 2 latach. Stabilną fazę metanową można już zauważyć po upływie 1 roku.

Zbyt intensywna recyrkulacja odcieków może prowadzić do zahamowania fazy metanogennej, w wyniku zawracania wraz z odciekami bardzo dużych ilości kwasów

organicznych, które, prowadząc do obniżenia pH, stają się inhibitorem dla populacji bakterii metanogennych [56].

Chugh i inni [13] stwierdzili, że produkcja metanu jest stabilna, a stężenia ChZT w odciekach odbieranych znacznie niższe niż w recyrkulowanych, gdy jednorazowa objętość zawracanych odcieków w ciągu dnia nie przekracza 30% objętości zdeponowanych odpadów.

Reinhart i Al.-Yousfi [85] wykazali, że recyrkulacja odcieków nie tylko wpływa na ich jakość, ale również skraca czas stabilizacji odpadów od kilku dekad do 2-3 lat. Na czynnych składowiskach osiągnięcie stabilnych parametrów fermentacji metanowej wymaga dłuższego czasu ze względu na mniej stabilne warunki środowiskowe panujące w złożu odpadów (mniejsza jednorodność odpadów oraz mniej równomierne rozprowadzanie odcieków) [102].

Oonk i Woelders [76] przeprowadzili badania w skali półtechnicznej nad wpływem czasu recyrkulacji na wielkość stężeń zanieczyszczeń wymywanych z nieprzetworzonej biofrakcji (tabela 10).

Wskaźniki – zanieczyszczeń	Skład chemiczny odcieków ze złoża biofrakcji:						
	bez recyrkulacji	z recyrkulacją – 6 miesięcy	z recyrkulacją – 12 miesięcy				
ChZT, mg O ₂ /dm ³	60700	39200	19400				
BZT ₅ , mg O_2/dm^3	42000	26000	9400				
TKN, mg/dm ³	4700	5400	4200				
Chlorki, mg/dm ³	4700	5700	6500				
рН	7.1	7.8	8.2				
Chrom, mg/dm ³	450	670	1300				
Nikiel, mg/dm ³	770	350	450				
Miedź, mg/dm ³	64	18	330				
Cynk, mg/dm ³	2500	180	560				
Kadm, mg/dm ³	<0.5	<0.5	<0.5				
Ołów, mg/dm ³	180	28	56				
Arsen, mg/dm ³	<50	210	190				
Rtęć, mg/dm ³	0.63	0.35	0.58				

Tabela 10. Skład odcieków ze złoża nieprzetworzonej biofrakcji z recyrkulacją i bez recyrkulacji odcieków [76]

Wyniki ich badań pokazały, że poziom stężeń zanieczyszczeń organicznych w odciekach zależy od czasu trwania recyrkulacji. Stężenia zanieczyszczeń organicznych (ChZT, BZT₅ i TKN) w odciekach po 12-stu miesiącach recyrkulacji były odpowiednio o 68, 77 i 10%, niższe niż stwierdzone w odciekach z odpadów stabilizowanych bez recyrkulacji odpowiednio, oraz o 49, 36 i 77% niższe niż w odciekach z odpadów stabilizowanych z 6-cio miesięczną recyrkulacją. Niska redukcja TKN w złożu odpadów z 12-sto miesięczną recyrkulacją była tłumaczona akumulacją azotu amonowego w złożu odpadów wywołaną

recyrkulacją odcieków (zawracaniem azotu amonowego). W badaniach Oonk'a i Woelders'a [76] oraz Šan'a i innych [92] wykazano, że niskie częstotliwości recyrkulacji sprzyjają większej koncentracji azotu amonowego w odciekach, a wzrost jej częstotliwości sprzyja jej spadkowi. Można to tłumaczyć tym, że stopień redukcji stężenia azotu amonowego zależy od zdolności akumulacyjnej złoża oraz efektywności biologicznej asymilacji azotu, która jest stymulowana przez substraty zawarte w recyrkulowanych odciekach.

Raninger i inni [84] przeprowadzili badania mające na celu ustalenie emisji zanieczyszczeń z monoskładowiska z recyrkulacją, na których zdeponowany był stabilizat. Skład chemiczny stabilizatu przestawiono w tabeli 11, natomiast parametry jakościowe odcieków po roku jego składowania w warunkach z recyrkulacją i bez recyrkulacji odcieków zestawiono w tabeli 12.

Wskaźniki zanieczyszczeń	Jednostka	Wartość średnia
Czas kompostowania	tydzień	16
AT ₄	mgO ₂ /g s.m.	6.6
AT ₇	mgO ₂ /g s.m.	11.5
Wartość kaloryczna	kJ/kg s.m.	6400
Strata prażenia	% s.m.	33
JPB ₉₀	dm³/kg s.m.	35
ТОС	g/kg s.m.	189
Arsen	mg/kg s.m.	7.5
Bar	mg/kg s.m.	550
Ołów	mg/kg s.m.	120
Kadm	mg/kg s.m.	3.2
Chrom	mg/kg s.m.	372
Kobalt	mg/kg s.m.	15
Miedź	mg/kg s.m.	250
Cynk	mg/kg s.m.	1030
Srebro	mg/kg s.m.	8.7
Rtęć	mg/kg s.m.	8.2
Nikiel	mg/kg s.m.	330
Azot amonowy	mg/kg s.m.	2130

 Tabela 11. Skład chemiczny BPOK stabilizowanych tlenowo [84]

Użyte w doświadczeniu odpady na początku składowania charakteryzowały się aktywnością respiracyjną (AT₄) równą 6.6 mg O_2/g s.m. oraz wskaźnikiem jednostkowej produkcji biogazu (JPB₉₀) na poziomie 35 dm³/kg s.m. Po roku składowania aktywność respiracyjna AT₄ i AT₇ zmniejszyła się o połowę. Stężenia zanieczyszczeń w odciekach ze stabilizatów z kwater z recyrkulacją i bez recyrkulacji przyjmowały wartości charakterystyczne dla składowisk ZOK będących w fazie metanogennej (tabela 12).

Walaoźwilej	Stężenia zanieczyszczeń w odciekach					
zanieczyszczeń	Descatherine stationie	Po roku składowania				
Zumeelyszelen	Początkowe stężenia	bez recyrkulacji	z recyrkulacja			
рН	7.3	7.6	7.2			
ChZT, mg/dm ³	11427	9984	8112			
BZT_{5} , mg/dm ³	748	522	250			
BZT ₅ /ChZT	0.07	0.05	0.03			
OWO, mg/dm ³	3755	2437	2953			
Azot amonowy, mg/dm ³	2217	2212	2867			
Chlorki, mg/dm ³	5393	-	-			
Siarczany, mg/dm ³	0.05	31	169			
Azotany, mg/dm ³	0.59	-	-			
Przewodność wł., µS/cm	26730	30000	27300			
	Metale					
Chrom, mg/dm ³	0.39	0.31	0.55			
Nikiel, mg/dm ³	1.08	1.14	1.25			
Miedź, mg/dm ³	1.94	-	-			
Cynk, mg/dm ³	0.96	-	-			
Kadm, mg/dm ³	0.006	n.w.	n.w.			
Ołów, mg/dm ³	0.24	0.11	0.05			

Tabela 12. Skład odcieków z BPOK stabilizowanych w dwóch wariantach technologicznych
z recyrkulacją i bez recyrkulacji [84]

n.w. – nie wykrywalny

Wartości ChZT i BZT₅ w odciekach z kwatery z recyrkulacją były o 20 i 52% niższe niż wartości oznaczone w odciekach z kwater bez recyrkulacji. Wysoka redukcja BZT₅ w odciekach wskazuje, że recyrkulacja przyspiesza rozwój mikroorganizmów odpowiedzialnych za rozkład substancji biodegradowalnych [35].

Po roku składowania stężenia azotu amonowego w odciekach ze stabilizatu składowanego w warunkach z recyrkulacją były wyższe o 29% w stosunku do stężeń w odciekach ze stabilizatu w początkowej fazie ich składowania, a w odciekach ze stabilizatu bez recyrkulacji były porównywalne.

2.6. Przemiany azotu w BPOK

Trudnym i obecnie istotnym zagadaniem związanym ze składowaniem odpadów po tlenowym przetwarzaniu jest ustalenie mechanizmów przemian azotu w anoksyczno/anareobowym złożu składowiska oraz ustalanie wpływu intensywności napowietrzania w procesie MBP na jego eliminację. Jest to zagadnienie istotne i mało rozpoznane. Do tej pory odpady były kompostowane w celu osiągnięcia jak najlepszych parametrów nawozowych, a wysoka zawartość azotu w stabilizacie była pożądana. Jednak w przypadku deponowania BPOK na

składowiskach wysokie stężenia azotu amonowego i azotanów nie są korzystne. Wysokie stężenia amoniaku w fazie acetogennej mogą hamować metanogenezę [8, 22, 109]. Natomiast wysokie stężenia azotanów w fazie hydrolitycznej powodują przebieg denitryfikacji pośredniej wywołując opóźnienie redukcji azotynów i azotanów w fazie acetogennej co skutkuje dłuższym czasem wpracowywania metanogenezy[118, 122].

Stężenie azotu amonowego w odciekach jest wynikiem przebiegu w złożu odpadów różnych procesów tj.: rozkład biologiczny związków organicznych zawierających azot, zawracanie azotu amonowego do złoża wraz z recyrkulowanymi odciekami, rozcieńczanie odcieków, wymywanie azotu ze złoża przez wody opadowe, sorpcja azotu na złożu oraz jego akumulacja i/lub redukcja na drodze biologicznej [69, 78, 90, 92, 97]. Akumulacja azotu amonowego przez bakterie beztlenowe przebiega najintensywniej w odpadach na składowiskach z recyrkulacją odcieków [78].

Jedną ze stosowanych metod przeciwdziałania nadmiernej ilości azotu amonowego kumulowanego w złożu odpadów jest jego utlenianie na drodze bezpośredniej iniekcji powietrza do wnętrza składowiska lub jego utlenianie, bezpośrednio w recyrkulownych odciekach [58].

Onay i Pohland [75], na podstawie serii badań symulujących procesy degradacji odpadów na składowisku w fazie metanowej, przy jednoczesnym utrzymywaniu warunków nitryfikacyji i denitryfikacji, uzyskali redukcję azotanów na poziomie od 91 do 93%. Podobnie Price i inni [83] dawkując azotany do reaktorów z wpracowaną metanogenezą uzyskali bardzo dobre efekty redukcji azotanów do azotu gazowego w wyniku denitryfikacji. Burton i Watson-Craik [8] w złożu odpadów zmieszanych, po 1 miesiącu składowania, uzyskali redukcję azotanów z wartości 1000 mg/dm³ do poziomu niewykrywalnego.

2.7. Modelowanie zmian jakości odcieków w długim okresie czasu

Procesy przebiegające w odpadach na składowiskach są zależne od wielu czynników, które w praktyce trudno poddają się modelowaniu. Wynika to zarówno ze złożoności procesów biochemicznych przebiegających w złożu odpadów, jak i z różnorodności technik eksploatacji składowisk. Na ostateczny efekt rozkładu odpadów mają wpływ warunki hydrauliczne przepływu wód przez złoże, udział i właściwości frakcji organicznej w odpadach oraz biochemiczne i fizyczne parametry degradacji.

W literaturze przedstawiono wiele modeli matematycznych podejmujących próbę ilościowego opisania złożonych procesów biochemicznych i fizycznych, przebiegających na składowiskach. Koncentrują się one na modelowaniu właściwości hydrologicznych złoża

odpadów [23, 65, 109], jakości i ilości produkowanych odcieków [3, 16, 18, 19, 34, 77, 100, 119, 120] oraz symulowaniu produkcji biogazu [53, 66, 73].

Wśród modeli uwzględniających rozdział substancji zawartych w odpadach na substancje zawarte w odpadach, odciekach i biogazie przebieg procesów zachodzących w złożu opisuje się najczęściej jako reakcje enzymatyczne. Często jednak autorzy upraszczają opis procesu biochemicznego rozkładu do reakcji pseudopierwszegorzędu, które uwzględniają różne czynniki abiotyczne [119, 120]. Formuły matematyczne w modelach opartych na reakcjach enzymatycznych są złożone i wymagają dużej liczby danych, których ustalenie stwarza wiele problemów [114, 115,116]. Główną przyczyną trudności w ustalaniu reprezentatywnych parametrów opisujących proces degradacji jest heterogeniczny charakter złoża odpadów na składowisku, który prowadzi do niejednorodnego rozkładu czynnikó w wpływających na ich rodzaj i szybkość [25]. Zarówno wilgotność, porowatość, jak i zawartość substancji organicznych w odpadach, rozłożone są niejednolicie w całej przestrzeni składowiska [40]. Związane jest to ze sposobem zagęszczania odpadów, który ma istotny wpływ na rozkład gęstości i wilgotność odpadów w pionowym profilu składowiska oraz na rozkład faz degradacji w przekroju składowiska [40]. Poszczególne warstwy składowanych odpadów stanowią więc oddzielne reaktory biochemiczne.

Próbą zdefiniowania heterogenicznych systemów są modele stochastyczne. Tradycyjne modelowanie procesów przebiegających na składowiskach wiąże się ze stosowaniem formuł deterministycznych, w których zmienność modelowanych parametrów sprowadza się do wartości średnich. Podejście takie sprzyja generowaniu błędów prognostycznych. W modelach stochastycznych uwzględnia się heterogeniczność procesów zakładając niepewność wprowadzanych parametrów do modelu, które traktuje się jako zmienne losowe, podlegające prawom probabilistycznego rozkładu.

2.7.1. Modelowanie biochemicznych procesów degradacji

Wczesne prace nad modelowaniem procesów zachodzących na składowiskach traktowały złoże odpadów jak beztlenowe bioreaktory. Procesy w nich zachodzące opisywano za pomocą prostych formuł matematycznych wykorzystujących równanie Monoda, w którym szybkość rozkładu odpadów uzależniano od aktywności mikrobiologicznej złoża limitowanej stężeniem substratu. W modelach tych pomijano początkową tlenową aktywność mikrobiologiczną odpadów traktując ją jako mało znacząca w stosunku do procesów beztlenowych [3, 16, 100]. W modelu Straub'a i Lynch'a [100] szybkość wymywania zanieczyszczeń ze złoża odpadów uzależniono od zawartości wilgoci w odpadach, ilości wody wprowadzonej do złoża, masy zanieczyszczeń w odpadach oraz stężenia zanieczyszczeń w odciekach:

$$\frac{\partial C}{\partial t} + \frac{q}{\theta \left(\frac{\partial C}{\partial Z}\right)} + \frac{1}{\theta \frac{\delta J}{\delta Z}} = R + \frac{rC}{\theta}$$
(16)

$$R = \left(\frac{\bar{S}}{\bar{S}_o}\right)^m b(C_{\max} - C), \tag{17}$$

Demetracopoulous [16] rozszerzył model o równanie Monoda uwzględniające szybkość wzrostu mikroorganizmów w zależności od dostępności substratu:

$$\frac{\delta(C\theta)}{\delta t} + \frac{\delta Cq}{\delta Z} = \frac{\delta\left[\theta E(\theta)\frac{\delta C}{\delta Z}\right]}{\delta Z} + \theta R$$
(18)

$$R_1 = \frac{KS}{\bar{S}_o(C_{st} - C)} \tag{19}$$

$$R_2 = \frac{\mu_{\max} XC}{\left[Y(K_S + C)\right]} \tag{20}$$

$$R = R_1 + R_2, (21)$$

Natomiast Borzaconi i inni [3] uwzględnili dodatkowo hydrolizę biodegradowalnych składników odpadów (węglowodanów, białek i tłuszczy):

$$\frac{\delta S}{\delta t} = -k_h \bar{S} \tag{22}$$

$$\frac{\delta(\theta C)}{\delta t} = \frac{\delta}{\delta Z} \left[\theta E(\theta) \frac{\delta C}{\delta Z} \right] - q \frac{\delta C}{\delta Z} - \frac{\delta \bar{S}}{\delta t} - \frac{\mu_{\max} X C}{Y(K_s + C)}$$
(23)

$$E(\theta) = \frac{d_z q}{\theta} \tag{24}$$

gdzie: R - szybkość wymywania zanieczyszczeń, S_o - początkowa masa zanieczyszczeń w odpadach podlegająca wymywaniu, \overline{S} - masa zanieczyszczeń w odpadach podlegająca wymywaniu, C - stężenie zanieczyszczeń w odciekach, q - objętościowe natężenie przepływu, θ - wilgotność odpadów, J - współczynnik rozproszenia strumienia wilgoci, $E(\theta)$ - współczynnik rozproszenia, K - współczynnik szybkości, μ_{max} - maksymalna szybkość zużywania substratu, X - koncentracja

mikroorganizmów, Y - masowy współczynnik wydajności biomasy, K_s - wartość liczbowo równa takiemu stężeniu S, przy którym szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej, d_z - dyspersja porowatego materiału, Z - zmienna pionowa.

Vavilin [110, 111] biorąc pod uwagę fakt, że hydroliza jest procesem limitującym biodegradację odpadów, zmianę masy biodegradowalnej w odpadach oraz objętość wytworzonego metanu przedstawił za pomocą reakcji pierwszego rzędu:

$$X = X_o e^{-k_h t} \tag{25}$$

$$Q = Y_M X_o \left(1 - e^{-k_h t} \right) \tag{26}$$

gdzie: X_o - początkowa masa biodegradowalna w odpadach, k_h - stała szybkość hydrolizy, Y_M - masowy współczynnik wydajności biomasy metanogennej powstającej przy asymilacji jednostki masy rozłożonego węgla.

Obecnie, bardziej rozbudowane modele biochemiczne opisując dynamikę przemian w ekosystemie składowiska również traktują hydrolizę jako proces limitujący degradację oraz uwzględniają zmiany mikrobiologiczne (fazę wzrostu i obumierania) w złożu odpadów wykorzystując równanie Monoda. Dodatkowo jednak uwzględniają fazowość przemian zachodzących w złożu odpadów modelując proces względem faz: hydrolizy, acidogenezy i metanogenezy.

Takie podejście przedstawił w swojej pracy El-Fadel i inni [18, 19, 21] oraz Zacharof i Butler [120]. El-Fadel i inni zaproponowali deterministyczny model służący do szacowania ilości powstającego biogazu, przy założeniu, że szybkość procesów uzależniona jest od dostępności źródła węgla w różnych, zmiennych w czasie, fazach procesu. Natomiast Zacharof i Butler zaproponowali uniwersalny model stochastyczny. Oba modele szczegółowo opisano poniżej.

Model deterministyczny El-Fadel'a

El-Fadel i inni [21] przyjęli w modelu dwa czynniki determinujące szybkość biodegradacji odpadów na składowisku: hydrolizę i pH środowiska. Hydrolizę potraktowano w modelu jako reakcję pierwszego rzędu, a jej szybkość wyrażano ubytkiem stężenia substratu w odpadach w czasie za pomocą równania (28):

$$C_{(S)_i} + H_2 O \rightarrow C_{(Aq)_i} \tag{27}$$

$$\frac{dC_{(S)_i}}{dt} = -k_h C_{(S)_i} \tag{28}$$

gdzie: k_h - stała szybkość hydrolizy i-tego składnika odpadów, d⁻¹; $C_{(S)i}$ - stężenie węgla organicznego w i-tym składniku odpadów, kg/m³.

Stężenie jonów wodorowych w modelu wyznaczono, dla stanu pseudo - równowagi w układzie ciecz – gaz, równaniem (29):

$$f[H^{+}] = \frac{K_{SO}A_{0}}{K_{H}P_{CO_{2}}A_{2}} + [H^{+}] - \left(\frac{A_{1} + 2A_{2}}{A_{0}}\right)K_{H}P_{CO_{2}} - \frac{K_{w}}{[H^{+}]} - [A_{c}^{-}] = 0, \quad (29)$$

w którym: $A_{0} = \left[1 + \frac{K_{a1}}{[H^{+}]} + \frac{K_{a1}K_{a2}}{[H^{+}]^{2}}\right]^{-1}, A_{1} = \left[\frac{[H^{+}]}{K_{a1}} + 1 + \frac{K_{a2}}{[H^{+}]}\right]^{-1}$ oraz
 $A_{2} = \left[\frac{[H^{+}]^{2}}{K_{a1}K_{a2}} + \frac{[H^{+}]}{K_{a2}} + 1\right]^{-1},$

gdzie: H^+ - stężenie jonów wodorowych, mol/dm³; A_c^- - stężenie jonów octanowych, mol/dm³; K_{SO} - stała rozpuszczalności węglanu wapnia (mol/dm³)²; K_w - iloczyn jonowy wody, (mol/dm³)²; K_{a1} i K_{a2} - stałe dysocjacji kwasu węglowego, mol/dm³; K_H - stała Henrego dla CO₂, mol/dm³; P_{co2} - ciśnienie parcjalne CO₂.

Składniki występujące w równaniach modelu przyjęto dla warunków beztlenowych, a złoże odpadów potraktowano jako układ ciekło - gazowy w równowadze do ciśnienia parcjalnego ditlenku węgla w gazie i stałego stężenia węglanu wapnia w odpadach. Stężenia kwasów organicznych wyrażono jako stężenie kwasu octowego.

Przyjęte w modelu sekwencje przemian węgla organicznego i analizowane formy jego występowania w złożu przedstawiono na rysunku 10.

W modelu charakteryzuje się siedem form występowania węgla organicznego, których udział zmienia się stosownie do warunków występujących w złożu odpadów wynikających z aktualnej fazy rozkładu. W modelu oblicza się stężenie węgla organicznego: w odpadach stałych, rozpuszczonego w odciekach, przyswojonego przez biomasę acidogenną, występującego w octanach, przyswojonego przez biomasę metanogenną oraz zawartego w metanie i w ditlenku węgla.

Bilans masowy węgla opisano równaniem (30), a względną szybkość wzrostu mikroorganizmów równaniem Monoda (31):

$$C_{(x)} = C^{g}{}_{(x)} - C^{d}{}_{(x)}, (30)$$

$$\frac{dX}{dt} = \frac{\mu_{\max}S}{K_S + S} X.$$
(31)

gdzie: $C_{(x)}$ - zawartość węgla w formie x w produkcie przemiany, kg/m³/d; $C^{g}_{(x)}$ - zawartość węgla w formie x w substracie, kg/m³/d; $C^{d}_{(x)}$ - zużycie węgla w formie x przez biomasę mikroorganizmów X, kg/m³/d; dX/dt - szybkość wzrostu mikroorganizmów, kg/m³/d; μ_{max} -

maksymalna właściwa szybkość wzrostu, d⁻¹; X - koncentracja mikroorganizmów, kg/m³; S - stężenie substratu, kg/m³; K_s - stała nasycenia liczbowo równa takiemu stężeniu substratu S, przy którym szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej, kg/m³.

Rys. 10. Formy węgla organicznego ulęgającego biodegradacji w kolejnych fazach rozkładu substancji [21]

Uwzględniając równania (30) i (31) El-Fadel i inni [21] opisali przebieg zmian stężenia różnych form węgla podczas procesu fermentacji odpadów następująco:

węgiel organiczny w odpadach stałych:

$$C_{(s)_{i}} = -\sum_{i=1}^{3} \left(k_{h_{i}} C_{(s)_{i}} \right)$$
(32)

węgiel organiczny w związkach rozpuszczalnych w wodzie:

$$C_{(Aq)} = \sum_{i=1}^{3} \left(k_{h_i} C_{(s)_i} \right) - \left(\frac{\mu_{\max A}}{Y_A} \right) \left(\frac{C_{(Aq)}}{K_{S_A} + C_{(Aq)}} \right) C_{(X_A)},$$
(33)

węgiel zasymilowany przez biomasę acidogenną:

$$C_{(X_A)} = \left[\left(\frac{\mu_{\max A} C_{(Aq)}}{K_{S_A} + C_{(Aq)}} \right) - k_{d_A} \right] C_{(X_A)}, \tag{34}$$

węgiel zasymilowany przez biomasę metanogenną:

$$C_{(X_M)} = \left[\left(\frac{\mu_{\max M} C_{(Ac)}}{K_{S_A} + C_{(Ac)}} \right) - K_{d_M} \right] C_{(X_M)}, \tag{35}$$

węgiel w octanach:

$$C_{(Ac)} = Y_{HAc} \left[\left(1 - Y_A \right) \left(\frac{\mu_A}{Y_A} \right) \left(\frac{C_{(Aq)}}{K_{S_A} + C_{(Aq)}} \right) + K_{d_A} \right] C_{(x_A)},$$

$$- \left[\left(\frac{\mu_M}{Y_M} \right) \left(\frac{C_{(Ac)}}{K_{S_M} + C_{(Ac)}} \right) \right] C_{(X_M)}$$
(36)

węgiel zawarty w metanie:

$$C_{(CH_4)} = Y_{CH_4} \left[\left(1 - Y_M \right) \left(\frac{\mu_{\max M}}{Y_M} \right) \left(\frac{C_{(Ac)}}{K_{S_M} + C_{(Ac)}} \right) + k_{dM} \right] C_{(X_M)},$$
(37)

węgiel zawarty w ditlenku węgla:

$$C_{(CO_{2})} = \left(1 - Y_{HAc}\right) \left[\left(1 - Y_{A}\right) \left(\frac{\mu_{\max A}}{Y_{A}}\right) \left(\frac{C_{(Aq)}}{K_{S_{A}} + C_{(Aq)}}\right) + k_{d_{A}} \right] C_{(X_{A})} + \left(1 - Y_{CH_{4}}\right) \left[\left(1 - Y_{M}\right) \left(\frac{\mu_{M}}{Y_{M}}\right) \left(\frac{C_{(Ac)}}{K_{S_{M}} + C_{(AC)}}\right) + k_{d_{M}} \right] C_{(X_{M})} \right],$$
(38)

gdzie: $C_{(S)}$ - zawartość węgla organicznego w odpadach, kg/m³; indeks i = 1,2,3 - składniki odpadów: węglowodany, tłuszcze i białka; $C_{(Aq)}$ - stężenia rozpuszczonego węgla organicznego, kg/m³; $C_{(X_A)}$ i $C_{(X_M)}$ - stężenia węgla zasymilowanego przez biomasę acidogenną i metanogenną, kg/m³; $C_{(Ac)}$ zawartość węgla w octanach, kg/m³; $C_{(CO_2)}$ i $C_{(CH_4)}$ - stężenie węgla związanego w ditlenku węgla i metanie, kg/m³; Y_A i Y_M - masowe współczynniki wydajności biomasy acidogennej i metanogennej powstającej przy asymilacji rozłożonego węgla, kg/kg; $\mu_{\max A}$ i $\mu_{\max M}$ - stałe właściwe szybkości maksymalnego wzrosty biomasy acidogennej i metanogennej (d⁻¹); K_{SA} i K_{S_M} - stałe nasycenia dla acidogenezy i metanogenezy, kg/m³; k_{d_A} i k_{d_M} - stałe obumierania biomasy acidogennej i metanogennej, d⁻¹; Y_{Ac} - masowy współczynnik produkcji kwasu octowego z rozpuszczonego węgla, kg/kg; Y_{CH_4} - masowy współczynnik produkcji metanu z węgla związanego w kwasie octowym, kg/kg.

W równaniach uwzględniono aktywność dwóch populacji mikroorganizmów: acidogennej i metanogennej. Wzrost każdej z nich opisują cztery współczynniki kinetyczne (K_s, k_d, μ, Y) , a efektywność przemian dwa masowe współczynniki wydajności (Y_{AC_s}, Y_{CH_4}) . W tabeli 13 przedstawiono wartości stałych kinetycznych używanych w modelowaniu.

Stałe kinetyczne hydrolizy zostały obliczone oddzielnie dla każdego z trzech organicznych składników odpadów (węglowodanów, białek i tłuszczy) za pomocą reakcji pierwszorzędowej (równanie 32).

Parametr	Iednostka	Wartość parametru					
i ululloti	Jednostka	minimalna	maksymalna	średnia			
Metanogeneza							
$\mu_{\max M}$	d ⁻¹	0.10	0.25	0.50			
Y_M	kg s.m.o.kg ⁻¹ ChZT	0.05	0.06	0.07			
Y _{CH4}	-	0.6	-	0.70			
K_{S_M}	d ⁻¹	10	500	2500			
k _{d M}	kg s.m.o.kg ⁻¹ ChZT	0.01	0.03	0.04			
		Acetogeneza					
$\mu_{\max A}$	d ⁻¹	2	10	30			
Y _A	kg s.m.o.kg ⁻¹ ChZT	0.10	0.15	0.50			
Y_{AC}	-	-	0.90	-			
K _{SA}	K _{SM}	10	50	150			
k _{d A}	kg s.m.o.kg ⁻¹ ChZT	0.01	0.05	0.40			

Tabela 13. Stałe biokinetyczne używane jako wytyczne do propozycji modelowania [18]

Metanogeneza: O'Rourke, Lawrence i McCarty, Montgomery Acidogeneza: McCarty, Pohland i Ghosh, Eastman i Ferguson, Zoetemeyer i in.

Model stochastyczny Zacharof'a i Butler'a

W modelu stochastycznym przedstawionym w pracy Zacharof'a i Butler'a, procesy biochemiczne rozumiane i opisywane są podobnie jak w pracy El-Fadel'a. Istotna różnica polega na ustalaniu czynników biochemicznych, które w pracy zostały opisane za pomocą zmiennej funkcji ekspotencjalnej obrazującej wzrost i obumieranie mikroorganizmów w zależności od zmian dostępności węgla w odpadach (rys. 11). Takie podejście pozwoliło na znaczne zmniejszenie ilości wymaganych danych stosowanych w modelu oraz na eliminację trudnych do realistycznego ustalenia parametrów procesu.

W modelu heterogeniczność procesu uwzględniona została poprzez odpowiednie obliczenie czasu przemieszczania się odcieków przez złoże odpadów, które jednocześnie potraktowano jako niezbędny i wystarczający czas wymywania zanieczyszczeń z odpadów i rzeczywisty czas przebiegu procesu wykorzystywany do modelowania. Czas przemieszczania się odcieków w odpadach uzależniony został od wysokości złoża oraz od prędkości przemieszczania się odcieków przy założeniu, że prędkości w złożu mają rozkład normalny.

Zastosowanie czasu jako podstawowego parametru opisującego proces dla wszystkich faz degradacji odpadów oraz jednej funkcji ekspotencjalnej opisującej zmiany mikrobiologiczne w złożu umożliwiło autorom modelu stworzenie prostych i funkcjonalnych formuł do jego opisu.

Kombinowaną funkcję wzrostu i rozkładu biologicznego przedstawiono wzorem (39):

$$R(t) = Ate^{(-kt)}$$
⁽³⁹⁾

gdzie: R(t) - szybkość reakcji w czasie t, kg/rok; A - amplituda okresu, kg/rok²; k - stała szybkości, rok⁻¹.

Wartości funkcji R(t) (rys. 11) uzależnione są od szybkości wzrostu mikroorganizmów i obrazują dwie fazy procesu. Faza pierwsza, charakteryzuje się szybkim wzrostem wartości funkcji R(t). Jest to okres, w którym szybkość wzrostu mikroorganizmów w złożu składowiska rośnie wykładniczo dzięki dużej dostępności łatworozkładalnych substratów. Faza druga, charakteryzuje się wyraźnym spadkiem wartości, które ekspotencjalnie dążą do zera. Obejmuje ona okres hamowania wzrostu wynikający z wyczerpywania się dostępnych do przyswajania rozpuszczonych związków organicznych.

Rys. 11. Funkcja wzrostu i rozkładu A=0.01 kg/rok², k=0.1 rok⁻¹ [119]

Proces hydrolizy w modelu opisany jest reakcją pierwszego rzędu limitowaną dostępnością łatwoprzyswajalnych substratów. Szybkość zmian masy molarnej składników odpadów w wyniku ich rozkładu w różnych fazach procesu opisano równaniami przedstawionymi poniżej (40) - (43):

zmiany masy biodegradowalnej odpadów stałych

$$\frac{dm_{i(s)}}{dt} = -k_h m_{i(s)}, \qquad (40)$$

zmiany masy węgla w fazie hydrolizy

$$\frac{dm_{i(Aq)}}{dt} = k_h m_{i(s)} - A_a t e^{(-k_a t)},$$
(41)

zmiany masy węgla w fazie acetogennej

$$\frac{dm_{i(Ac)}}{dt} = A_{ate}^{(-k_a t)} - A_m t e^{(-k_m t)},$$
(42)

zmiany masy węgla w fazie metanogennej

$$\frac{dm_{i(Me)}}{dt} = A_m t e^{(-k_m t)},\tag{43}$$

gdzie, m_i - masa i-tego komponentu;

Symbole S, Aq, Ac, Me oznaczają kolejno: masę zhydrolizowaną, masę acetogenną oraz masę metanogenną. Indeksy h, a, m określają stałe szybkości hydrolizy, acetogenezy i metanogenezy. Symbole A_a, A_m opisują amplitudy rozkładu octanów i metanu.

W modelu parametry opisujące dynamikę zmian na składowisku opisano za pomocą pięciu dodatnich parametrów A_a, A_m, k_h, k_a, k_m charakteryzujących zmiany masy biodegradowalnej w kolejnych trzech fazach rozkładu, których suma równa jest 0.

W celu uproszczenia modelu funkcję określającą szybkości reakcji w czasie t, w pracy Zacharof'a, scałkowano i obliczono jej granicę. Ustalono:

$$\int_{0}^{t} Ate^{-kt} dt = A \left[-\frac{1}{k} te^{-kt} - \frac{1}{k^2} (e^{-kt} - 1) \right]$$
(44)

$$\lim_{t \to \infty} \left\{ A \left(-\frac{1}{k} t e^{-kt} - \frac{1}{k^2} (e^{-kt} - 1) \right) \right\} = \frac{A}{k^2}$$
(45)

Wartości parametrów A_a , A_m i k_m , k_a autorzy modelu wyznaczyli numerycznie z równania (45), natomiast wartość k_h poprzez logarytmowanie równania (40). Przyjęcie w pracy warunku, że równania (41) i (42) w długoterminowym okresie obserwacji będą równe zero, umożliwiło autorom stwierdzenie, że $\frac{A_a}{k_a^2}$ równa się biodegradowalnej masie odpadów oraz,

że
$$\frac{A_a}{k_a^2} = \frac{A_m}{k_m^2}$$
. W związku z powyższym w modelu Zacharof'a parametry A_a i A_m zostały

pominięte, a niewiadomymi parametrami pozostały tylko parametry k_h , k_a , k_m .

W opisywanym modelu, jedną funkcją opisano przemiany hydrolityczne, acetogenne i matonogenne. Nie wzięto w nim pod uwagę, relacji pomiędzy węglowodanami, tłuszczami i białkami, które są tu sprowadzone do wartości jednego parametru określonego w całości dla masy biodegradowalnej. Również nie wzięto po uwagę rozdziału pomiędzy masą odpadów

łatwo i trudno ulegających degradacji, oraz wpływu temperatury, zawartości wilgoci, pH, toksyczności metali itd.

2.7.2. Wartości stałych szybkości hydrolizy, acidogenezy, acetogenezy i metanogenezy

Wartości stałych szybkości rozkładu odpadów zależą od składu morfologicznego odpadów oraz warunków biologicznych, chemicznych i fizycznych procesu (rozdział 2). Stałe szybkości hydrolizy, acetogenezy i metanogenezy ZOK podawane w różnych źródłach

literaturowych [18, 19, 21, 31, 34, 54, 55, 62, 114, 119] zmieniają się w bardzo szerokim zakresie:

- o stała szybkości hydrolizy, k_h od 10^{-7} do 10^2 d⁻¹;
- o stała szybkości acetogenezy, k_{Ac} od 10⁻⁴ do 10³ d⁻¹;
- o stała metanogenezy, k_m od 10⁻⁵ do 10⁵ d⁻¹.

W tabeli 14 przedstawiono stałe szybkości hydrolizy, acidogenezy, acetogenezy i metanogenezy dla różnych rodzajów odpadów: celulozy, obornika, osadów ściekowych oraz odpadów z chlewni [110]. Na podstawie tych danych można zauważyć, że podczas beztlenowego procesu biodegradacji odpadów najwolniej przebiega proces hydrolizy, następnie metanogenezy, natomiast proces acidogenezy przebiega najszybciej.

Wartości stałej szybkości hydrolizy określone przez różnych autorów dla "świeżych" i "starych" zmieszanych odpadów komunalnych, celulozy oraz dopadów spożywczych przedstawił w swojej pracy Jokela i inni [42].

Wynoszą one odpowiednio:

- o "świeże" zmieszane odpady komunalne $0.3 d^{-1}$,
- o "stare" zmieszane odpady komunalne $0.0035 d^{-1}$,
- o celuloza $0.011 d^{-1}$,
- \circ odpady spożywcze 0.55 d⁻¹.

		5 1	5 L J
Faza procesu	Rodzaj odpadów	Stała szybkości, d ⁻¹	Literatura
	Celuloza, 35°C	0.1	Noike i in.
Undroliza	Obornik, 55°C	0.25	Andelidaki i in.
nyuloliza	Osady ściekowe, 35°C	0.25	Siegrist i in.
	Odpady z chlewni, 20°C	0.25	Hill i Barth,
	Celuloza, 35°C	5.6 (B1), 4.1 (B2)	Noike i in.
Acidogeneza	Obornik, 55°C	1.8 (B1), 1.6 (B2)	Andelidaki i in.
	Osady ściekowe, 35°C	5 (B1), 5 (B2)	Siegrist i in.
	Odpady z chlewni, 20°C	5 (B1), 4.5 (B2)	Hill i Barth,
	Celuloza, 35°C	0.56	Noike i in.
Apotogonoza	Obornik, 55°C	0.22	Andelidaki i in.
Acetogeneza	Osady ściekowe, 35°C	0.8	Siegrist i in.
	Odpady z chlewni, 20°C	0.6	Hill i Barth,
Matana	Celuloza, 35°C	0.56 (H)	Noike i in.
	Obornik, 55°C	0.21 (A), 0.37 (H)	Andelidaki i in.
wietanogeneza	Osady ściekowe, 35°C	0.5 (A), 2 (H)	Siegrist i in.
	Odpady z chlewni, 20°C	0.56 (A), 1 (H)	Hill i Barth,

Tabela 14. Stałe szybkości hydrolizy w różnych fazach procesu fermentacji [110]

B1 - rozkład do octanów, B2 – rozkład do kwasu propionowego, A – wykorzystywanie octanów w metanogenezie, H - wykorzystywanie wodoru w metanogenezie

W literaturze nie spotkano wartości stałych hydrolizy dla BPOK, poza publikacjami Musmeci'ego [70] oraz Komilis'a [49].

Musmeci podał wartości stałej szybkości hydrolizy dla odpadów przekompostowanych składających się z trawy, liści i kartonów o różnych procentowych ich zawartościach od 0,165 do 0.190 d⁻¹.

Komilis [49] wyznaczył stałe szybkości hydrolizy szybko (k_{h_s}) oraz umiarkowanie (k_{h_u}) ulegających biodegradacji frakcji odpadów: papierniczych, zielonych, kuchennych oraz gałęzi, liści, i trawy, poddawanych oddzielnemu kompostowaniu w warunkach laboratoryjnych (tabela 15).

2.7.3. Prognoza zmiany jakości odcieków w długim okresie czasu

Proces wymywania składników z odpadów trwa dziesiątki lat. Systematyczna kontrola jakości odcieków w pełnej skali składowisk prowadzona jest maksymalnie 30-40 lat i to jedynie na składowiskach ZOK (tabela 4) [51, 52, 89, 113]. Jest to okres zbyt krótki do formułowania ostatecznych wniosków zmian jakości odcieków w długim okresie czasu. Niemniej jednak badania takie pokazują pewną tendencję zmian składu odcieków.

Stałe szybkości	Odpady papiernicze	Odpady zielone	Odpady kuchenne	Liście	Gałęzie	Trawa
		Skład m	norfologiczny o	dpadów		
SHFW, %	8.5	25	14	0	0	0
UHFW,%	43	67	44	28	16	90
WHFW,%	45	0	31	70	82	0
		•	Stałe hydrolizy	T		
k_{h_S} , d ⁻¹	0.06	0.09	0.1	0	0	0
k_{h_u} , d ⁻¹	0.005	0.008	0.05	0.031	0.06	0.03

Tabela 15. Stałe szybkości hydrolizy wybranych odpadów [49]

SHFW - szybko hydrolizującą frakcja odpadów, UHFW - umiarkowanie hydrolizującą frakcja odpadów, WHFW - wolno hydrolizującą frakcja odpadów

Można wyróżnić cztery alternatywne metody uzyskiwania danych do prognozowania zmian zanieczyszczeń w odciekach w okresie długoterminowym [52]:

- test wymywania (TW) stosowany w skali laboratoryjnej, polegający na wymywaniu zanieczyszczeń w wytrząsarce w określonym czasie (np.: jedna dobę),
- test w reaktorach laboratoryjnych (TL) prowadzony najczęściej w reaktorach o objętości 100 dm³ z instalacją do ujmowania biogazu oraz zawracania odcieków prowadzony przez kilkanaście tysięcy dni,
- o test prowadzony w skali technicznej (ST),
- o dane pochodzące z długoterminowego monitoringu składowiska lub kilkunastu różnych składowisk, o różnym wieku [5, 6, 36, 43]; na podstawie tych danych wyznacza się tendencję zmian, a na jej podstawie prognozę (S).

Stężenia większości zanieczyszczeń (zanieczyszczeń organicznych, azotu, chlorku) emitowanych w odciekach w długim czasie ekspotencjalnie dążą do zera. Do prognozowania ich zmian najczęściej wykorzystywana jest funkcja ekspotencjalna pierwszego rzędu [5, 36] (punkt 2.7.1.).

Dane dotyczące prawdopodobnych czasów wymywania zanieczyszczeń z odpadów w literaturze są stosunkowo dobrze rozpoznane. Jednakże, dotyczą przede wszystkim zmieszanych odpadów komunalnych. Kylefors [52] przedstawił czasy wymywania zanieczyszczeń organicznych, azotu i chlorków ze ZOK zebrane na podstawie różnych źródeł literaturowych (tabela 16 a i b).

Źródło badań	Matada	Stężenia zanieczyszczeń, mg/dm ³						
	badań	ChZT			OWO		BZT ₅	
		60	100	200	20	100	15	
Youcai i in.	ST	-	<15	-	-	-	-	
Kruempelbeck i Ehring	S	-	-	65-320	-	-	40-100	
Belevi i Bacccini	TW	-	-	-	500-1700	-	-	
Kruse	TL	280-335	-	-	-	-	340-520	
Heyer i in.	TL	-	-	80-360	-	-	30-210	
Andreas i Bilitewski	TL	200-300	-	120-220	-	-	-	
Andreas, stare odpady	TL	-	-	10-130	-	12-78	-	
Andreas, młode odpady	TL	-	-	295-637	-	129-545	-	

Tabela 16 a. Czasy wymywania zanieczyszczeń z odpadów [52]

Tabela 16 b. Czasy wymywania zanieczyszczeń z odpadów [52]

,	Metoda	Stężenia zanieczyszczeń, mg/dm ³						
Źródło badań	badań		1		Cl			
	0 www.ii	5	15	50	70	100	200	
Youcai i in.	ST	-	24	-	-	-	-	
Kruempelbeck i Ehring	S	55-80	-	-	-	25-130	58	
Belevi i Bacccini	TW	815-930	-	440-550	-	100-150	-	
Kruse	TL	-	-	-	-	210-260	140-185	
Heyer i in.	TL	250-580	-	-	120-450	90-250	-	
Andreas i Bilitewski	TL	-	-	-	120-300	-	-	
Andreas, stare odpady	TL	-	-	-	23-344	104-248	-	
Andreas, młode odpady	TL	-	-	-	206-920	205-778	-	

Belevi i Baccini [4] przedstawili interesującą pracę (jest ona cytowana w literaturze pomimo odległego czasu prowadzenia badań, podobnie jak prace innych autorów z tego okresu) na temat masy specyficznych składników odpadów usuwanych w odciekach i biogazie z odpadów miejskich po 10 latach ich składowania, wyrażając ją w postaci współczynników przenoszenia K_p oraz K_g , odpowiednio.

Współczynniki przenoszenia zdefiniowano wyrażeniem (tabela 17):

$$K = \frac{M_{prod.}}{M_{subst.}}$$

gdzie: $M_{prod.}$ - całkowita ilość składnika wyemitowana z odpadów w gazie lub odcieku przez 10 lat składowania, $M_{subst.}$ całkowita zawartość składnika w wieloskładnikowym odpadzie miejskim.

Na podstawie tych wielkości zaprezentowali przebieg zmian emisji składników odpadów, w odciekach i w biogazie w funkcji czasu, dla okresu długoterminowego (rys. 12).

Składnik	Zawartość w odpadzie g/kg	Kg	К _р
С	290	0.22	0.003
N	4	-	0.06
Р	1	-	0.002
S	2	0.003	0.001
Cl	7.2	0.006	0.05
F	0.2	0.05	0.0009
Fe	50	2.1	1.1
Zn	1.2	$4\tilde{\cdot}_1$	2.1
Cu	0.4	2.1	2.1
Pb	0.4	1.1	$7\tilde{\cdot}_1$
Cd	0.011	$4\tilde{\cdot}_1$	6.1

Tabela 17. Współczynniki przenoszenia zanieczyszczeń z odpadów komunalnych do gazu i odcieków, po 10 latach ich składowania [5]

Rys. 12. Przebieg emisji składników odpadów do odcieków i powietrza w funkcji czasu [5] XPi - ilość składnika "i" wyemitowana z odpadów w odciekach, XGi - ilość składnika "i" wyemitowana z odpadów w gazie.

Anthonissem [1] opierając się na wynikach doświadczeń przeprowadzonych w skali laboratoryjnej, przedstawił zmianę stężeń chlorków i azotu ogólnego w odciekach w funkcji wieku pełnej skali składowiska oraz krzywe sumowe emitowanych ładunków na tle ich całkowitych potencjałów w odpadach (rys. 13 i 14).

Rys. 13. Zmiany stężeń chlorków w odciekach oraz krzywe sumowe emitowanych ładunków w funkcji wieku pełnej skali składowisk (powierzchnia 1 m², wysokość 20 m) [1]

Rys. 14. Zmiany stężeń azotu ogólnego w odciekach oraz krzywe sumowe emitowanych ładunków w funkcji wieku pełnej skali składowisk (powierzchnia 1 m², wysokość 20 m) [1]

3. Tezy pracy. Cel i zakres.

3.1. Tezy pracy

- Tlenowa stabilizacja zmieszanych odpadów komunalnych w otwartych komorach tlenowych, przed składowaniem, jest skuteczną metodą zmniejszania emisji ładunku zanieczyszczeń organicznych w odciekach oraz produkcji biogazu na składowisku.
- Recyrkulacja odcieków intensyfikuje procesy degradacji odpadów deponowanych na składowiskach, efektywnie zmniejszając czas emisji ładunków zanieczyszczeń organicznych usuwanych w odciekach i biogazie zarówno z odpadów przetworzonych, jak i nieprzetworzonych biologicznie.

3.2. Cel pracy

- Ustalenie produkcji biogazu oraz ładunków zanieczyszczeń organicznych i mineralnych emitowanych z nieprzetworzonych i przetworzonych biologicznie zmieszanych odpadów komunalnych.
- Ustalenie wpływu recyrkulacji odcieków na efekt redukcji emisji zanieczyszczeń i produkcji biogazu z odpadów przed i po biologicznym przetworzeniu.
- Wyznaczenie stałych szybkości hydrolizy, acidogenezy i metanogenezy odpadów oraz przedstawienie prognozowanych czasów emisji zanieczyszczeń organicznych i biogazu z odpadów nieprzetworzonych i przetworzonych biologicznie, bez i z recyrkulacją odcieków, w oparciu o zmodyfikowany model Zacharof'a i Butler'a [120].

3.3. Zakres pracy

- o Oznaczenie składu morfologicznego i chemicznego ZOK i BPOK.
- Przeprowadzenie w skali technicznej badań ilości i składu chemicznego odcieków powstających ze zmieszanych odpadów komunalnych nieprzetworzonych i po biologicznej stabilizacji w warunkach tlenowych przez okres 2.5 lat.
- Przeprowadzenie w skali laboratoryjnej badań ilości i składu chemicznego odcieków powstających ze zmieszanych odpadów komunalnych nieprzetworzonych i po biologicznej stabilizacji w warunkach tlenowych, z i bez recyrkulacji odcieków, przez czas odpowiadający okresowi 2.5 lat składowania odpadów w warunkach polowych.

- Adaptacja modelu Zacharof'a i Butler'a do opisu kinetyki przemian badanych odpadów w reaktorach (lizymetrach) laboratoryjnych oraz w zasobniach symulujących rzeczywiste składowisko.
- Wyznaczenie stałych szybkości rozkładu odpadów, oraz czasów emisji zanieczyszczeń w odciekach i biogazie w okresie perspektywicznym.

4. Metodyka

Badania nad produkcją biogazu i wielkością ładunków zanieczyszczeń emitowanych z odpadów przed i po biologicznym przetworzeniu prowadzono w skali laboratoryjnej i technicznej. Badania w skali laboratoryjnej prowadzono przez okres 1 roku (od 1 października 2005 do 1 października 2006 roku) w laboratorium Instytutu Inżynierii Środowiska Uniwersytetu Zielonogórskiego. Badania w skali technicznej prowadzono przez okres 2.5 lat (od czerwca 2003 do grudnia 2005 roku) w obiektach Kompostowni Odpadów Komunalnych w Zielonej Górze.

4.1. Badania laboratoryjne

4.1.1. Stanowisko badawcze

Badania laboratoryjne prowadzono w czterech reaktorach wykonanych z rur PVC o średnicy 0.15 m i wysokości 1.30 m. W dnie każdego reaktora zamontowano króciec (rura z zaworem) do odprowadzania odcieków, a w pokrywie górnej dwa króćce: do wprowadzania wody lub odcieków (recyrkulacja) oraz do odprowadzenia biogazu (rys. 15). Ujmowane odcieki magazynowano w zbiorniku o pojemności 20 dm³.

Rys. 15. Schemat bioreaktora

Króciec gazowy, w pokrywie górnej reaktora, połączony był rurociągami elastycznymi, o średnicy 10 mm z biuretami gazowymi (cylindry o średnicy wewnętrznej 85 mm z podziałką). Biurety wypełnione były nasyconym roztworem NaCl, który miał możliwość spływania do otwartego pojemnika umieszczonego poniżej reaktora. Podciśnienie wynikające z różnicy poziomów solanki w biurecie i pojemniku wymuszało przepływ biogazu z reaktora do biurety. W szczycie biurety umieszczony był zawór umożliwiający usuwanie nagromadzonego w niej gazu, między kolejnymi odczytami, oraz pobór próbek do analizy. Wysokie stężenie NaCl w solance ograniczało rozpuszczanie się składników biogazu w roztworze.

Drugi króciec w pokrywie reaktora połączony był ze zbiornikiem, z którego dawkowano wodę symulującą opady atmosferyczne oraz z rurociągami elastycznymi połączonymi z pompką perystaltyczną, za pomocą której okresowo recyrkulowano odcieki ze zbiornika magazynowego. Na tym króćcu pod pokrywą, zamontowana była deszczownica służąca do równomiernego rozprowadzania wody i odcieków na powierzchni złoża odpadów.

Przed wypełnieniem reaktorów odpadami, na ich dnie ułożono 0.15 m warstwę żwiru symulującą warstwę filtracyjną na składowiskach i zapobiegającą zatykaniu rurociągu odprowadzającego odcieki, oraz zamocowano termopary.

Do każdego reaktora wprowadzono po 10 kg odpadów rozdrobnionych do wymiarów ziarna < 40 mm i dokładnie wymieszanych.

Dwa reaktory wypełniono odpadami nieprzetworzonymi (reaktory oznaczono literą S), a dwa następne odpadami po biologicznym przetworzeniu (reaktory oznaczono literą P). Odpady układano warstwami o grubości 0.15-0.20 m i ubijano ręcznie do gęstości 565 kg/m³. Powierzchnię odpadów pokryto 0.05 m warstwą żwiru o średnicy ziarna od 10 do 20 mm.

Do jednego reaktora S i jednego reaktora P podłączono rurociągi do recyrkulacji odcieków. Reaktory te oznaczono: SR (reaktor wypełniony odpadami ZOK) oraz PR (reaktor wypełniony BPOK).

4.1.2. Charakterystyka odpadów

W badaniach użyto zmieszane odpady komunalne pochodzące z Zielonej Góry, z zabudowy wysokiej z centralnym ogrzewaniem: nieprzetworzone biologicznie (ZOK) oraz po mechaniczno-biologicznym przetworzeniu (BPOK). Próbki odpadów pobrano zgodnie z BN-87/9103-03. Reprezentatywne próbki ZOK o masie około 15 kg pobierano z samochodu dostarczającego odpady do Kompostowni Odpadów Komunalnych w Zielonej Górze (rys. 16). Ciąg technologiczny kompostowani składa się z czterech otwartych komór żelbetowych, do których odpady są kolejno przerzucane. W każdej komorze odpady przetrzymywane są od 7 do 10 dni. Łączny czas kompostowania odpadów wynosi około 5 tygodni. W kompostowni odpady napowietrzane są poprzez odsysanie gazów z dna komór. Próbki BPOK pobierano z zasobni produktu końcowego kompostowni.

Właściwości badanych odpadów określono analizując po 10 prób zmieszanych odpadów komunalnych i odpadów po mechaniczno - biologicznym przetworzeniu.

Oznaczenie składu morfologicznego polegało na przesianiu odpadów przez sito o wymiarach oczek: 10 mm i zważeniu otrzymanych frakcji: 0 - 10 mm i > 10 mm.

Skład grupowy odpadów oznaczono we frakcji: > 10 mm wydzielając następujące składniki morfologiczne: odpady kuchenne i ogrodowe, papier i kartony, szkło, tworzywa sztuczne, tekstylia, opakowania wielomateriałowe, drewno, metale i odpady mineralne. Skład grupowy frakcji wyrażono jako udział składnika w ogólnej masie odpadów, w % (m/m).

Analizie chemicznej poddano próbki odpadów pozbawione składników wielkogabarytowych i metali. Zakres analizy obejmował następujące oznaczenia: wilgotność, substancje lotne (straty przy prażeniu w temp. 500 °C), węgiel organiczny, biodegradowalny węgiel organiczny, potencjał gazotwórczy. Wilgotność próbek oznaczono wg normy PN-93Z-15008/2. Węgiel organiczny oznaczono w próbkach po oznaczeniu wilgotności i rozdrobnionych do ziarna < 1 mm wg PN-Z-15011-3:2001. Biodegradowalny węgiel organiczny oraz potencjały gazotwórcze oznaczono zgodnie z metodyką zalecaną w literaturze [32].

4.1.3. Prowadzenie badań

Po wypełnieniu reaktorów odpadami i szczelnym ich zamknięciu, rozpoczęto dawkowanie do każdego z nich wody wodociągowej w ilości 1dm³/d, w celu doprowadzenia odpadów do stanu nasycenia wodą. Po pojawieniu się pierwszych ilości odcieków (po 7 dniach), przystąpiono do codziennego dawkowania wody wodociągowej w ilości symulującej rzeczywiste objętości opadów atmosferycznych. Dawki wody ustalono na podstawie miesięcznych raportów Instytutu Meteorologii w Zielonej Górze. Przyjęto, że minimalna jednorazowa ilość dawkowanej wody wodociągowej nie będzie mniejsza niż 5 mm. W rezultacie w ciągu 51 tygodni trwania badań do reaktorów wprowadzono wodę w ilości odpowiadającej objętości opadów atmosferycznych na terenie Zielonej Góry z okresu 2.5 lat (od czerwca 2003 do grudnia 2005 roku). W celu przeniesienia skali laboratoryjnej na skalę rzeczywistą obliczono, że tydzień badań w laboratorium odpowiada 18.20 dniom w skali technicznej.

Recyrkulację odcieków prowadzono raz w tygodniu w ilości 1 dm³. Ilości powstających odcieków i biogazu rejestrowano codziennie. Analizy składu chemicznego biogazu i odcieków wykonywano raz w tygodniu.

4.2. Badania w skali technicznej

4.2.1. Stanowisko badawcze

Badane odpady umieszczono w dwóch żelbetowych zasobniach (rys. 16), wchodzących w skład ciągu technologicznego kompostowni, o wymiarach $LxBxH = 44.30 \times 4.72 \times 3.10 m$ i objętości czynnej $V_{cz} = 343 m^3$ (rys. 16). Odpady układano 15-20 cm warstwami i zagęszczano lekkim spychaczem gąsienicowym, uzyskując gęstości nasypowe; w zasobni wypełnionej ZOK – 0.69 Mg/m³, a w zasobni wypełnionej BPOK – 0.56 Mg/m³.

1 - zespoły ciągów kompostowych: M - zbiorniki magazynowe, A, B, C - komory kompostowania, 2 - zasobnie (I i II), 3 - zbiornik na ścieki, 4 – wentylatorownia, 5 - budynek obróbki kompostu, 6 - magazyn kompostu, 7 – biofiltr.

Rys. 16. Schemat technologiczny kompostowni i stanowiska pomiarowego

Zasobnie wyposażono w system ujmowania odcieków i biogazu. Odcieki ujmowano rurociągiem drenażowym umieszczonym w dnie każdej zasobni wyposażonym w wodomierz. Spust i punkt poboru prób odcieków zlokalizowano w pomieszczeniu wentylatornii (rys.16). Układ odbioru odcieków składał się z 5 dm³ zbiornika przepływowego służącego do poboru

próbek oraz zbiornika pośredniego o pojemności 50 dm³. Magazynowane odcieki po przekroczeniu granicznego poziomu zwierciadła w zbiorniku pośrednim odpompowywano do żelbetowego zbiornika magazynowego kompostowni. W celu uniemożliwienia zasysania powietrza do złoża odpadów przez rurociągi odprowadzające odcieki zakończono je syfonami.

Rurociągi drenażowe do ujmowania biogazu zainstalowano wzdłuż zasobni na dwóch głębokościach (0.5 m powyżej dna i 1 m poniżej wierzchowiny odpadów). Króćce do ujmowania biogazu wyprowadzono na zewnątrz wzdłuż ścian bocznych każdej zasobni.

4.2.2. Charakterystyka odpadów

W badaniach użyto zmieszane odpady komunalne pochodzące z Zielonej Góry, z zabudowy wysokiej z centralnym ogrzewaniem (ZOK). W zasobni I zdeponowano około 238 Mg nieprzetworzonych ZOK, a w zasobni II około 193 Mg odpadów przekompostowanych według technologii opisanej w punkcie 4.1.2. Odpady przed umieszczeniem w zasobniach poddano badaniom w zakresie i metodami opisanymi w punkcie 4.1.2. Odpadów nie pokryto warstwą gruntu mineralnego.

4.2.3. Prowadzenie badań

Po wprowadzeniu odpadów do zasobni przystąpiono do codziennego monitoringu ilości powstających odcieków. Dobowe ilości odcieków ustalano w oparciu o codzienny odczyt wodomierzy.

Odcieki do badania składu fizyko - chemicznego pobierano na początku procesu dwa razy w tygodniu (od 1 do 122 dnia trwania badań), następnie raz w tygodniu (od 123 do 365 dnia procesu) i w ostatniej fazie badań (od 366 do 915 dnia) raz na trzy tygodnie. Przed każdym poborem reprezentatywnej próbki, zbiornik do poboru próbek odcieków, każdorazowo opróżnianego 24 godziny przed ich poborem.

4.3. Kontrola procesu

4.3.1. Skala laboratoryjna

Kontrola procesu obejmowała analizy sitowe, morfologiczne i składu chemicznego badanych odpadów oraz pomiary ilości i analizy składu chemicznego odcieków i biogazu, powstających w czasie trwania eksperymentu. Analizy odpadów wykonano zgodnie z metodyka opisaną w punkcie 4.1.2.

Pobieranie i przechowywanie próbek oraz badania składu chemicznego odcieków wykonano zgodnie z obowiązującymi normami polskimi PN-EN ISO 5667-3: 2002.

W odciekach oznaczano zawartość: substancji organicznych (ChZT, OWO, BZT₅, LKT), składników biogennych (azot ogólny, azot amonowy), substancji mineralnych (chlorki i siarczany) oraz mierzono ich pH, zasadowość ogólną, potencjał utleniająco-redukcyjny (potencjał redoks) (Załączniki 8, 10, 12 i 14). Oznaczenia i mineralizację próbek wykonywano w dniu ich pobrania. Oznaczenia azotu ogólnego wykonywano w próbkach zmineralizowanych po zgromadzeniu ich w większej ilości. Wszystkie analizy wykonywano zgodnie z obowiązującymi normami:

- pH oraz zasadowość ogólną oznaczono metodą potencjometrycznie według PN-90/C-04540/02;
- temperaturę, przewodność właściwą oraz potencjał redoks oznaczono przy użyciu miernika Multiline P4 firmy WTW;
- chlorki oznaczono metodą z azotanem rtęci w obecności chromianu jako wskaźnika (metoda Mohra), według PN-ISO 9297;
- o siarczany oznaczono metodą miareczkową, według PN-ISO 9280:2002;
- o azot ogólny mineralizowany metodą Kjeldahla, według PN-73/C-04576/12;
- o azot amonowy metodą destylacji z miareczkowaniem, według PN ISO 5664;
- lotne kwasy tłuszczowe oznaczono metodą destylacji bezpośredniej PN-75/C-04616;
- chemiczne zapotrzebowanie na tlen oznaczono metodą dwuchromianową, według PN-ISO 6060:2006;
- biologiczne zapotrzebowanie na tlen oznaczono metodą respirometryczną, aparatem OxiTop WTW, według PN-EN 1899-2(H55);
- o ogólny węgiel organiczny (OWO) oznaczono metodą spektrofotometryczną w podczerwieni, z zastosowaniem analizatora TOC-VCSH/CSN firmy Shimandzu, według PN-EN 1484;

Skład chemiczny biogazu mierzono, raz w tygodniu, za pomocą analizatora gazu WAG-1. Ilości biogazu i odcieków określono na podstawie codziennych odczytów (Załączniki 2, 16). Analizy wykonano w akredytowanym laboratorium Instytutu Inżynierii Środowiska Uniwersytetu Zielonogórskiego.

4.3.2. Skala techniczna

Kontrola procesu obejmowała analizy składu sitowego, morfologicznego i chemicznego odpadów, pomiary ilości i analizy składu chemicznego odcieków, pomiary składu chemicznego biogazu oraz monitoring wielkości opadów atmosferycznych (Załączniki 3, 5 i 7).

Analizy odpadów i odcieków przeprowadzono zgodnie z normami i metodami opisanymi w punkcie 4.3.1. Ze względu na trudności techniczne w oznaczeniu produkcji biogazu w skali technicznej (zasobnie nie były przykryte warstwą gruntu mineralnego, powodowało to, że powstający gaz w szybkim tempie przedostawał się do atmosfery, co nie pozwalało na uzyskanie wiarygodnych wyników pomiaru) obliczono ją teoretycznie w oparciu o wyznaczone doświadczalnie potencjały gazotwórcze ustalone w czasie 100 dni (JPB100 – całkowita produkcja biogazu) [32] oraz procedury obliczeniowe produkcji biogazu [30]. Stężenie metanu w biogazie mierzono analizatorem WAG-1 (Załącznik 7).

Ilości odcieków określano na podstawie dobowych odczytów z wodomierzy zainstalowanych na rurociągach zbiorczych odcieków (Załącznik 1).

Wielkości dobowe oraz sumowe opadów atmosferycznych określono na podstawie miesięcznych raportów uzyskanych ze Stacji Meteorologicznej usytuowanej w pobliżu składowiska.

5. Wyniki badań

5.1. Właściwości badanych odpadów

5.1.1. Skala laboratoryjna

Właściwości i skład morfologiczny próbek odpadów nieprzetworzonych i po biologicznej stabilizacji przedstawiono w tabeli 18.

ZOK użyte w badaniach miały wilgotność równą 40.2%, straty prażenia 58.5% s.m. oraz iloraz C/N - 29. Wilgotność BPOK wynosiła 34.5%, straty prażenia 52.2% s.m., a iloraz C/N - 18.

Wyszczególnienie	Skala laboratoryjna		Skala techniczna	
	ZOK	BPOK	ZOK	BPOK
Właściwości odpadów				
Wilgotność, %	40.2	34.5	38.5	32.7
Straty prażenia, % s.m.	58.5	52.2	54.0	54.2
Węgiel organiczny, kg/kg s.m.	0.38	0.27	0.40	0.31
Węgiel biodegradowalny, kg/kg s.m.	0.111	0.046	0.112	0.047
Całkowita produkcja biogazu, dm ³ /Mg	144.5	49	145	50
Azot ogólny, kg/kg s.m.	0.013	0.015	0.012	0.014
Skład morfologiczny				
Odpady kuchenne i ogrodowe + frakcja 10-20 mm	42.5	32.6	43.6	32.4
Papier i tektura	17.5	14.9	18.9	15.2
Szkło	9.8	12.5	9.3	12.9
Tworzywa sztuczne	13.5	17.7	13.0	18.3
Tekstylia	2.5	2.9	2.3	2.7
Opakowania wielomateriałowe	2.5	3.6	2.5	3.5
Drewno	0.1	0.1	0.1	0.1
Metale	1.6	1.9	1.5	2.0
Odpady mineralne w tym frakcja < 10 mm	10.0	13.8	8.8	12.9
Razem	100	100	100	100

Tabela 18. Właściwości i skład morfologiczny badanych odpadów

Dominującymi składnikami w odpadach nieprzetworzonych biologicznie były pozostałości kuchenne i ogrodowe (42.5%) oraz papier i tektura (17.5%). Udziały tych frakcji w ZOK w porównaniu z BPOK były wyższe o odpowiednio: 23.3 i 14.8%. Udziały pozostałych składników były niższe niż w BPOK o: szkło - 27.5%, tworzywa sztuczne – 31.0%, tekstylia – 16.0%, opakowania wielomateriałowe – 44.0%, metale - 18.7%, frakcja drobna poniżej 10 mm – 38.0%.

5.1.2. Skala techniczna

Skład morfologiczny ZOK i BPOK stosowanych w badaniach w skali technicznej przedstawiono w tabeli 18. ZOK miały wilgotność równą 38.5%, straty prażenia 59.0% s.m. oraz iloraz C/N – 33.0. Wilgotność BPOK wynosiła 32.7%, straty prażenia 54.2% s.m. a iloraz C/N – 22.0.

Skład morfologiczny odpadów użytych w doświadczeniu w skali technicznej różnił się nieznacznie od składu odpadów wykorzystanych w badaniach laboratoryjnych. Różnice udziałów poszczególnych składników nie przekraczały 1.5%. W odpadach nieprzetworzonych biologicznie udziały odpadów kuchennych i ogrodowych oraz zawartość makulatury (papier i tektura) były wyższe niż w BPOK o: 25.6 i 19.5%, odpowiednio. Udziały pozostałych składników były niższe o: szkło – 27.9%, tworzywa sztuczne – 28.9%, tekstylia – 14.8%, opakowania wielomateriałowe – 28.5%, metale – 25.0%, odpady mineralne, w tym frakcja < 10 mm – 31.7%.

5.2. Badania laboratoryjne

5.2.1. Ilości powstających odcieków

Na rysunku 17 przedstawiono tygodniowe objętości wody wodociągowej (symulujące opady atmosferyczne) dawkowanej w ciągu doby do reaktorów oraz średnie tygodniowe ilości odcieków powstających w reaktorach S i P (Załącznik 2). Na rysunku 18 przedstawiono średnie tygodniowe objętości wody wodociągowej dawkowanej do reaktorów z recyrkulacją i usuniętych odcieków oraz łączne objętości dodawanej wody i recyrkulowanych odcieków (Załącznik 2). Na rysunku 19 przedstawiono krzywe sumowe objętości dodawanej wody, wody i recyrkulatu oraz odcieków powstających w reaktorach.

Ilości odcieków z reaktorów S i P, w początkowym okresie badań (do 7 tygodnia - 127 dzień badań) były znacznie wyższe niż ilości dawkowanej wody wodociągowej; z odpadów przekompostowanych (reaktor P) 5-cio krotnie, a z odpadów surowych 4-ro krotnie. W pozostałym okresie (poza 30 tygodniem - 546 dzień badań) objętości odcieków i dawkowanej wody różniły się nieznacznie lub były wyraźnie niższe. Całkowita objętość odcieków z reaktora S była zbliżona do objętości dawkowanej wody (tylko o 3.6% wyższa), natomiast z reaktora P o 11% niższa.

Rys. 17. Średnie tygodniowe objętości wody dawkowanej do reaktorów i odcieków z odpadów nieprzetworzonych (reaktor S) i przetworzonych biologicznie (reaktor P)

Objętości netto odcieków (objętość odcieków po odjęciu objętości odcieków recyrkulownych) powstających w reaktorach z recyrkulacją SR i PR zmieniały się w szerokim zakresie w całym okresie badań. Najwyższe objętości odcieków w stosunku do ilości wody dodanej odnotowano, w początkowym okresie badań, do 109 dnia badań (6 tydzień).

Najwyższą objętość netto odcieków uzyskano z reaktorów z recyrkulacją (rys. 19). Objętość odcieków z reaktora SR była o 14.0% wyższa od objętości z reaktora S, natomiast objętość odcieków z reaktora PR o 16.6% od objętości z reaktora P.

Rys. 18. Średnie tygodniowe objętości dodawanej wody, wody i recyrkulatu oraz odcieków z odpadów nieprzetworzonych (reaktor SR) i przetworzonych biologicznie (reaktor PR)

Rys. 19. Krzywe sumowe objętości dodawanej wody, wody i recyrkulatu oraz odcieków powstających w reaktorach odpadów nieprzetworzonych (reaktory S i SR) i przetworzonych biologicznie (reaktory P i PR)

5.2.2. Stężenia zanieczyszczeń w odciekach z reaktorów S, SR, P i PR

Na rysunkach 20-27 przestawiono zmiany stężeń wybranych wskaźników zanieczyszczeń w odciekach z reaktorów S, SR, P i PR (Załączniki 8, 10, 12, 14).

5.2.2.1 Zanieczyszczenia organiczne

Zmiany wartości ChZT, OWO, BZT₅ i LKT w odciekach z odpadów nieprzetworzonych i przetworzonych biologicznie, w reaktorach z recyrkulacją i bez, w całym czasie trwania badań przebiegały podobnie. Odcieki charakteryzowały się wysokimi stężeniami zanieczyszczeń substancji organicznych w pierwszym roku trwania badań oraz stosunkowo niskimi ich stężeniami w trzecim roku (rys. 20 i 23).

ChZT

ChZT odcieków z odpadów nieprzetworzonych i przetworzonych biologicznie osiągało zakres wysokich wartości w początkowym okresie badań, po czym malało i następnie nieznacznie rosło. Najwyższe wartości ChZT w odciekach z odpadów nieprzetworzonych (reaktory S i SR) odnotowano w 36 dniu prowadzenia badań (52.6 i 41.7 g O_2/dm^3), podczas gdy w odciekach z odpadów przetworzonych biologicznie (reaktory P i PR) w 73 dniu (51 i 35.2 g O_2/dm^3) (rys. 20).
Spadek ChZT w odciekach z odpadów przetworzonych biologicznie wystąpił znacznie wcześniej niż w odciekach z odpadów nieprzetworzonych. Intensywny spadek wartości ChZT w odciekach z reaktorów PR (od 35 do 3.08 g O_2/dm^3) oraz P (od 48.2 do 2.65 g O_2/dm^3) odnotowano od dnia 237 do 455 oraz od 237 do 473, odpowiednio. W odciekach z reaktorów SR i S znaczniej mniej intensywny spadek ChZT stwierdzono w dniach od 328 do 582 (od 28.0 do 2.55 g O_2/dm^3) i od 364 do 746 (od 31.9 do 3.14 g O_2/dm^3), odpowiednio. Po tych okresach wartości ChZT odcieków z reaktorów S i SR oraz P i PR nadal malały, jednak powoli, w ostatnim dniu badań wyniosły, odpowiednio: 0.92 i 0.47 oraz 0.38 i 0.37 g O_2/dm^3 .

Rys. 20. Zmiany ChZT odcieków z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

OWO

Przebieg zmian zawartości OWO w odciekach z odpadów przebiegał podobnie do zmian ChZT - na początku badań stężenia OWO sukcesywnie rosły, a następnie malały (rys. 21). Maksymalne stężenia OWO, najszybciej (w 73 dniu badań), zaobserwowano w odciekach z reaktorów z recyrkulacją SR (9.34 g/dm³) i PR (10.9 g/dm³). W odciekach z reaktorów S i P maksymalne stężenia OWO wystąpiły znacznie później, w dniach 182 (14.3 g/dm³) i 236 (15.1 g/dm³), kolejno.

Intensywny spadek stężeń OWO w odciekach z reaktora P obserwowano od 237 do 473 dnia (od 15.8 do 0.4 g/dm³), a z reaktora PR od 237 do 582 dnia (od 10.7 do 1.11 g/dm³). Wyraźny

spadek stężenia OWO w odciekach z reaktorów S i SR miał miejsce w okresie od 328 do 819 dnia (od 10.4 do 1.1 g/dm³) oraz od 237 do 582 dnia (od 9.03 do 0.91 g/dm³), odpowiednio. W pozostałym czasie badań stężenia OWO w odciekach zmieniały się nieznacznie. W ostatnim dniu pomiarów, we wszystkich reaktorach, oscylowały wokół wartości 0.4 g/dm³.

Rys. 21. Zmiany stężeń OWO w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

Przebieg zmian OWO w odciekach z reaktorów bez recyrkulacji i z recyrkulacją różnił się znacznie. Stężenia OWO w odciekach z reaktorów S i SR osiągnęły zbliżone wartości dopiero po 890 dniu pomiarów, podczas gdy z reaktorów P i PR już po 437 dniu.

BZT₅

Zmiany BZT₅ w odciekach z reaktorów S, SR, P i PR charakteryzowały się dużymi wahaniami wartości, których intensywność była większa w odciekach z reaktorów z recyrkulacją (SR i PR) niż w odciekach z reaktorów bez recyrkulacji (S i P) (rys. 22). Wartości BZT₅ w odciekach z reaktorów SR i PR wahały się w przedziałach od 10.8 do 0.07 g O_2/dm^3 i od 22.6 do 0.08 g O_2/dm^3 , odpowiednio, natomiast z reaktorów S i P od 16.2 do 0.29 g O_2/dm^3 oraz od 24.9 do 0.11 g O_2/dm^3 , kolejno. W odciekach ze wszystkich reaktorów, oprócz reaktora SR, najwyższe wartości BZT₅ oznaczono w 36 dniu badań: reaktor S - 16.2 g O_2/dm^3 , reaktor P - 24.8 g O_2/dm^3 i reaktor PR - 22.6 g O_2/dm^3 . W odciekach z reaktora SR maksymalną wartość BZT₅ oznaczono w 237 dniu (13.8 mg O_2/dm^3). Wysokie wartości BZT₅

(przy dużych wahaniach ich wartości) utrzymywały się do 364 dnia badań. Następnie zaobserwowano okres intensywnego spadku BZT₅, który przebiegał najkrócej w reaktorach z BPOK. Od 364 do 455 dnia BZT₅ w odciekach z reaktora P zmalało od 6.08 do 0.51 g O_2/dm^3 , a z reaktora PR od 16.9 do 0.80 g O_2/dm^3 . W kolejnych dniach BZT₅ nadal wolno malało do wartości w ostatnim dniu badań 0.1 g $O_2/dm^3 - w$ odciekach z reaktora P oraz do 0.08 g $O_2/dm^3 - w$ odciekach z reaktora PR.

W odciekach z reaktorów SR wartości BZT₅ nie malały tak intensywnie. Stały spadek wartości BZT₅ w odciekach z reaktora SR zaobserwowano w dniach od 364 do 618 dnia (od 6.65 do 0.44 g O_2/dm^3). Na tym poziomie BZT₅ utrzymywało się do końca badań. W przypadku reaktora S nie zaobserwowano okresu ustabilizowanych, niskich wartości BZT₅ w odciekach. W czasie trwania badań odnotowano trzy okresy stałego spadku wartości BZT₅ w odciekach poprzedzone ich wcześniejszym skokowym lub mniej intensywnym wzrostem: pierwszy od 36 do 236 dnia (16.2 – 1.9 g O_2/dm^3), następny od 327 do 619 dnia (4.04 – 1.13 g O_2/dm^3) i ostatni od 637 do 928 (4.99 – 0.07 g O_2/dm^3).

Rys. 22. Zmiany wartości BZT_5 w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

LKT

Przebieg zmian stężeń LKT w odciekach ze ZOK i z BPOK różnił się od siebie znacznie (rys. 23). Stężenia LKT w odciekach z reaktorów S i SR, od pierwszego dnia badań do 109 i 91

dnia, malały odpowiednio od 11.3 do 8.28 g/dm³ i od 10.3 do 7.71 g/dm³. Następnie rosły, osiągając wartość maksymalną w 364 dniu pomiarów; 15.3 g/dm³ (reaktor S) i 9.17 g/dm³ (reaktor SR). W kolejnych dniach do końca trwania badań stężenia LKT w odciekach z reaktorów SR i S malały z różną intensywnością spadku. Okres niskich wartości LKT w odciekach z reaktora SR (od 0.25 do 0.11 g/dm³), wystąpił znacznie szybciej, od 600 dnia, a w odciekach z reaktora S (0.17 g/dm³), dopiero w 910 dniu pomiarów.

Rys. 23. Zmiany stężeń LKT w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

Analizując przebieg zmian stężeń LKT w odciekach z BPOK wyróżnić można trzy okresy (rys. 23):

- o okres wzrostu i wysokich stężeń LKT: reaktor P od 16 do 291 dnia badań (9.30 17.70 g/dm³) oraz reaktor PR od 16 do 237 dnia (6.30 22.8 g/dm³),
- o okres praktycznie liniowego spadku stężeń LKT: reaktor P od 291 do 473 dnia (16.7 0.73 g/dm³ i reaktor PR od 237 do 473 dnia (22.9 0.51 g/dm³),
- o okres niskich stężeń LKT: reaktor P i PR od 474 do końca obserwacji; od 2.31 do 1.35 g/dm³ oraz od 0.35 do 0.095 g/dm³, odpowiednio.

5.2.2.2 Azot ogólny i azot amonowy

Azot ogólny

Stężenia azotu ogólnego w odciekach z reaktorów S i P przyjmowały wyższe wartości od stężeń oznaczonych w odciekach z reaktorów SR i PR w całym okresie obserwacji (rys. 24). W okresie od rozpoczęcia badań do 364 (reaktor S) i 182 dnia (reaktor P) wahały się one w szerokim zakresie wartości od 462 do 782 mg/dm³ i od 438 do 756 mg/dm³, odpowiednio. W kolejnych dniach do końca trwania badań stężenia azotu ogólnego w odciekach z reaktorów S i P wyraźnie malały. W tym czasie przyjmowały one wyraźnie niższe wartości w odciekach z reaktora P niż z reaktora S. Stężenia azotu ogólnego poniżej 200 mg/dm³ odnotowano w odciekach z reaktora P w 455 dniu badań, a z reaktora S dopiero w 764 dniu.

Rys. 24. Zmiany stężeń azotu ogólnego w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

Stężenia azotu ogólnego w odciekach z reaktorów SR i PR zmieniały się podobnie, poza okresem od 346 do 382 dnia badań, w którym stężenia azotu ogólnego w odciekach z reaktora SR były od 1.6 do 2.3 razy wyższe od stężeń w odciekach z reaktora PR (rys. 24). W pozostałym okresie stężenia azotu ogólnego w odciekach z reaktorów SR i PR zmieniały się w podobnym zakresie wartości, malejąc od 560 do 95 mg/dm³ i od 476 do 62 mg/dm³, odpowiednio. Niskie stężenia azotu ogólnego, poniżej 200 mg/dm³, wystąpiły po 382 dniu badań (odcieki z reaktora SR) i 418 dniu (odcieki z reaktora PR).

Azot amonowy

Zmiany stężeń azotu amonowego w odciekach z reaktorów S, SR, P i PR w początkowym okresie badań przebiegały podobnie (rys. 25). W pierwszych 109 dniach badań stężenia azotu amonowego najpierw skokowo wzrosły do poziomu powyżej 400 mg/dm³, a następnie zmalały przyjmując wartości z zakresu od 56 do 210 mg/dm³. W kolejnych dniach badań przebieg zmian stężeń azotu amonowego w odciekach z reaktorów S i P oraz SR i PR różnił się.

Rys. 25. Zmiany stężeń azotu amonowego w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

Stężenia azotu amonowego w odciekach z reaktora S, od 109 do 210 dnia badań, rosły od 210 do 392 mg/dm³, następnie do 328 dnia pomiarów, oscylowały wokół wartości 390 mg/dm³, po czym stopniowo malały i od 528 do 783 dnia pomiarów utrzymywały się na praktycznie stałym poziomie (około 130 mg/dm³); w 837 dniu gwałtownie spadły do wartości 42 mg/dm³ i oscylowały wokół tej wartości do końca prowadzenia badań.

Stężenia azotu amonowego w odciekach z reaktora P, od dnia 91 do 182 dnia pomiarów, szybko rosły od 126 do 308 mg/dm³ i następnie, od 182 do 473 dnia, sukcesywnie malały od 308 do 20 mg/dm³. Po 473 dniu stężenia azotu amonowego nadal malały, lecz już wolniej, następnie wzrosły do 28 mg/dm³ i od 710 dnia do końca badań oscylowały wokół tej wartości.

W odciekach z reaktora SR stężenia azotu amonowego rosły od 91 do 182 dnia pomiarów od 112 do 203 mg/dm³. Następnie na przemian szybko malały do wartości 8 mg/dm³ w 455 dniu, po czym rosły do wartości 93 mg/dm³ w 837 dniu pomiarów i ponownie malały do 36 mg/dm³ w ostatnim dniu badań.

W odciekach z reaktora PR stężenia azotu amonowego również naprzemian rosły (od 109 do 237 dnia pomiarów) od 56 do 175 mg/dm³, po czym szybko malały do wartości 14 mg/dm³ w 400 dniu badań i ponownie rosły do wartości 32 mg/dm³ w 528 dnia i znów malały do wartości 14 mg/dm³ w ostatnim dniu pomiarów.

5.2.2.3 Zanieczyszczenia mineralne

Chlorki

Zmiany zawartości chlorków w odciekach z reaktorów SR, P i PR przebiegały podobnie. W całym okresie badań ich stężenia malały niemal linowo z niewielkimi wahaniami od 1.40 do 0.09 g/dm³ w ostatnim dniu pomiarów (rys. 26).

Rys. 26. Zmiany stężeń chlorków w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

Zupełnie odmiennie przebiegały zmiany stężenia chlorków w odciekach z reaktora S. W początkowym okresie badań, od 1 do 237 dnia pomiarów, stężenia chlorków wahały się od 0.45 do 1.4 g/dm³ i następnie, najpierw skokowo wzrosły do wartości 6.3 g/dm³ w 255 dniu, po czym szybko zmalały do wartości 2.8 g/dm³ w 328 dniu i ponownie nieznacznie wzrosły

do wartości 3 g/dm³ w 400 dniu pomiarów. Od tego dnia stężenia chlorków początkowo szybko, a następnie wolno malały do wartości do 40 mg/dm³ w ostatnim dniu badań.

Siarczany

Stężenia siarczanów w odciekach ze wszystkich reaktorów charakteryzowały się podobną tendencją zmian (rys. 27). Najwyższe maksymalne stężenia siarczanów oznaczono w odciekach z reaktora PR. Po początkowym okresie badań, do 146 dnia, w którym stężenia siarczanów w odciekach z reaktora PR były stosunkowo niskie i oscylowały w granicach od 2.13 do 3.0 g/dm³, nastąpił okres szybkiego ich wzrostu do 12.5 g/dm³ w 237 dniu pomiarów. Po 364 dniu, stężenia siarczanów najpierw szybko zmalały do 0.81 g/dm³, po czym wzrosły do wartości 1.58 g/dm³ w 400 dniu, ponownie zmalały do 0.17 g/dm³ w 528 dniu i nadal wolno malały do wartości 5 mg/dm³ w ostatnim dniu pomiarów.

Rys. 27. Zmiany stężeń siarczanów w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym unieszkodliwieniu

Zmiany stężeń siarczanów w odciekach z reaktora SR przebiegały podobnie jak w odciekach z reaktorów S i P. Od 1 do 91 dnia pomiarów ich stężenia malały od 3.55 do 2.61 g/dm³, następnie rosły do 7.43 g/dm³ w 237 dniu, ponownie szybko malały do wartości 1.08 g/dm³ w 473 dniu, potem nieznacznie rosły do 1.3 g/dm³ w 528 dniu i do końca badań malały do wartości 42 mg/dm³ w ostatnim dniu badań.

Stężenia siarczanów w odciekach z reaktorów S i P, w początkowym okresie badań miały zbliżone wartości.

Najpierw malały od 4.02 do 3.32 g/dm³ do 73 dnia (reaktor S) oraz od 4.5 do 3.41 g/dm³ do 109 dnia (reaktor P), a następnie rosły do wartości 6.39 i 6.35 g/dm³ w 237 dniu, odpowiednio. Od 237 do 328 dnia stężenia siarczanów w odciekach z reaktora S ponownie malały do 3.62 g/dm³, po czym ponownie nieznacznie wzrosły do 4.14 g/dm³ w 400 dniu i ponownie zmalały do 49 mg/dm³ w ostatnim dniu pomiarów. Natomiast stężenia siarczanów w odciekach z reaktora P od 237 dnia pomiarów do końca badań sukcesywnie malały do wartości 6 mg/dm³.

5.2.2.4 pH, potencjał redoks i zasadowość

Na rysunkach 28-30 przedstawiono zmiany pH, potencjału redoks oraz zasadowości w odciekach z reaktorów S, SR, P i PR.

pН

Zmiany pH odcieków ze wszystkich reaktorów do 400 dnia badań przebiegały podobnie. W pozostałym okresie, tylko w odciekach z reaktora S przebiegały odmiennie (rys. 28). W całym okresie obserwacji odcieki z reaktora S wykazywały pH < 7, podczas gdy w odciekach z reaktorów PR, P i SR odczyn zasadowy pojawił się już w 437, 455 i 564 dniu, odpowiednio.

W początkowym okresie badań wartości pH odcieków z reaktorów P i PR różniły się nieznacznie. Od 1 do 91 dnia pomiarów pH odcieków z obu reaktorów malało od około 6 do około 5.4 i następnie powoli rosło do pH 5.8 w 291 dniu badań. Od tego dnia pH odcieków z reaktora PR intensywnie rosło do pH 7.5 w 473 dniu badań, natomiast z reaktora P nieznacznie zmalało do 5.3 w dniu 364. Zasadowy odczyn odcieków z reaktora PR utrzymywał się do 764 dnia badań. Po tym dniu pH odcieków z reaktora PR malało do wartości 6.7 w 910 dniu pomiarów. pH odcieków z reaktora P od 382 dnia badań szybko wzrosło do 7.0 w 455 dniu i w kolejnych dniach dalej wolno rosło do 7.4 w 800 dniu, a następnie utrzymywało się na tym poziomie do końca badań.

pH odcieków z reaktorów S i SR podobnie jak z reaktorów P i PR, przyjmowało zbliżone wartości, aż do 382 dnia badań zmieniając się w przedziele od 4.6 do 5.4. Po tym okresie pH odcieków z reaktora SR do 564 dnia pomiarów, szybko rosło od 4.7 do 7.0 i następnie nadal rosło, jednak mniej intensywnie, do 7.4 w 819 dniu badań. Od tego dnia obserwowano najpierw spadek pH odcieków do 6.6 w 910 dniu, po czym wzrost do 6.7 w ostatnim dniu pomiarów. Z kolei pH odcieków z reaktora S, w okresie od 382 do 691 dnia badań, wahało się

w przedziale od 4.8 do 5.2, następnie szybko wzrosło do 6.8 w 819 dniu, po czym zmalało do 6.3 w ostatnim dniu pomiarów.

Rys. 28. Zmiany pH w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

Potencjał redoks

Najniższe wartości potencjału redoks zmierzono w odciekach z reaktora PR (rys. 29). Po rozpoczęciu badań wartości potencjału redoks w odciekach z reaktora PR rosły od -341 do - 232 mV w 182 dniu, następnie malały do -372 mV w 473 dniu i ponownie rosły do -110 mV w 692 dniu pomiarów. W kolejnych dniach badań wartości potencjału redoks nadal rosły, ale mniej intensywnie, do wartości -88 mV, w ostatnim dniu badań.

Zmiany potencjału redoks w odciekach z reaktora P przebiegały podobnie jak w przypadku odcieków z reaktora PR. Do 91 dnia jego wartości rosły od -352 do -136 mV, po czym wolno malały do -159 mV w 327 dniu. Po tym dniu wartości potencjału redoks szybko zmalały do -320 mV w 510 dniu badań i następnie szybko wzrosły do wartości -75 mV, w ostatnim dniu pomiarów.

Przebieg zmian wartości potencjału redoks w odciekach z reaktora SR przebiegał podobnie jak w odciekach z reaktorów P i PR. Do 91 dnia badań wartości potencjału rosły od -320 do -145 mV i następnie zmalały, najpierw powoli do -168 mV w 364 dniu, a później szybko do wielkości -370 mV w 510 dniu. W kolejnych dniach obserwowano najpierw szybki wzrost

wartości potencjału redoks do -261 mV w 637 dniu, następnie spadek do -290 mV w 674 dniu i ponownie wzrost, najpierw powoli do -275 mV w 746 dniu i następnie szybki do -69 mV w ostatnim dniu pomiarów.

Rys. 29. Zmiany potencjału redoks w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

Przebieg zmian potencjału redoks w odciekach z reaktora S zdecydowanie się różnił od zmian obserwowanych w odciekach z pozostałych reaktorów, poza pierwszym okresem badań (do 36 dnia), w którym podobnie jak w pozostałych reaktorach, szybko rósł od -304 do -138 mV. W kolejnych dniach wartość potencjału redoks, na przemian, powoli malała do -184 mV w 237 dniu, następnie wolno rosła do -169 mV w 364 dniu, ponownie malała do -184 mV w 437 dniu, znów rosła do -139 mV w 692 dniu, malała do -172 mV w 764 dniu i rosła do - 69 mV w ostatnim dniu pomiarów.

Zasadowość

Analizując zmiany zasadowości w odciekach z reaktorów S, SR, P i PR można wyróżnić trzy charakterystyczne okresy (rys. 30):

- o okres zmiennych, wysokich wartości zasadowości;
- o okres szybkiego wzrostu, a następnie gwałtownego spadku zasadowości;
- o okres nieznacznego skokowego wzrostu i następnie stałego wolnego spadku zasadowości.

Wartości zasadowości odcieków z reaktorów P i PR oraz charakterystyka ich zmian były podobne w całym okresie obserwacji. W pierwszym okresie, od 1 do 109 dnia, zasadowość odcieków z reaktorów P i PR wahała się od 4.12 do 7.65 g CaCOO₃/dm³ oraz od 3.52 do 6.55 g CaCOO₃/dm³, odpowiednio.

Rys. 30. Zmiany zasadowości w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu

W drugim okresie, od 109 do 237 dnia, zasadowość odcieków z obu reaktorów rosła do 9.30 g CaCO₃/dm³ (w reaktorze P) oraz do 7.46 g CaCO₃/dm³ (w reaktorze PR), po czym malała do wartości, odpowiednio 1.6 i 2.55 CaCO₃/dm³ w 364 dniu. W trzecim okresie, zasadowości odcieków z reaktorów P i PR nieznacznie rosła do 3.03 i 2.88 g CaCO₃/dm³ w 400 dniu, odpowiednio. Po tym dniu zasadowość odcieków z reaktora PR sukcesywnie malała do 0.96 g CaCO₃/dm³ w ostatnim dniu pomiaru, a z reaktora P, najpierw malała do 1.18 g CaCO₃/dm³ w 764 dniu, po czym nieznacznie wzrosła do 1.55 g CaCO₃/dm³ w 885 dniu badań.

Zmiany zasadowości w odciekach z reaktorów S i SR przebiegały podobnie jak w przypadku odcieków z reaktorów BPOK. W okresie od 1 do 109 dnia zasadowość odcieków z reaktorów S i SR wahała się od 2.1 do 4.7 CaCO₃/dm³ oraz od 1.73 do 4.75 g CaCO₃/dm³, odpowiednio. W drugim okresie, zasadowość odcieków z tych reaktorów do 236 dnia rosła od 2.1 do 4.32 g CaCO₃/dm³ oraz od 1.73 do 4.5 g CaCO₃/dm³, a następnie zmalała do 2.25 i 0.91 g CaCOO₃/dm³ w 346 i 364 dniu, odpowiednio. W trzecim okresie zasadowość odcieków z

reaktorów S i SR malała, kolejno do 3.55 i 2.75 g CaCO₃/dm³ w 400 dniu pomiarów. Następnie zasadowość odcieków z reaktora S nadal wolno malała do 0.91 g CaCO₃/dm³ w ostatnim dniu badań, a z odcieków z reaktora SR wahała się w przedziale wartości od 1.35 do 2.41 g CaCOO₃/dm³, z wyraźną tendencją spadku.

5.2.3. Produkcja metanu w reaktorach S, SR, P i PR

Ilość metanu wyprodukowanego z odpadów nieprzetworzonych i przetworzonych biologicznie, z recyrkulacją odcieków i bez recyrkulacji i jego zawartość w biogazie, przedstawiono na rysunkach 31–33 (Załącznik 16).

Produkcja metanu w reaktorach z recyrkulacją (reaktory SR i PR) była wyższa od produkcji w reaktorach bez recyrkulacji (reaktory S i P), odpowiednio o 28% (ZOK) i 24% (BPOK).

Rys. 31. Dobowa produkcja metanu w reaktorach S, SR, P i PR

Metan najszybciej pojawił się w biogazie z reaktorów z odpadami przetworzonymi biologicznie (reaktory P i PR); w 109 dniu procesu (rys. 31). Produkcja metanu z odpadów nieprzetworzonych biologicznie (reaktory S i SR) rozpoczęła się w 164 i 237 dniu, odpowiednio. Faza wzrostu produkcji biogazu najkrócej trwała w reaktorach z BPOK: reaktor P - do 491 dnia z produkcją maksymalną metanu 1.2 dm³/d i reaktor PR – do 437 dnia z produkcją maksymalną metanu 2.2 dm³/d. Maksymalną dobową produkcję metanu z odpadów nieprzetworzonych (reaktory S i SR) uzyskano odpowiednio: w 691 i 528 dniu w wysokości

1.5 oraz 2.6 dm³/d. Produkcja metanu w reaktorach w ostatnim dniu pomiaru wyniosła: w reaktorze S - 0.65 dm³/d, w reaktorze P - 0.36 dm³/d, w reaktorze SR - 0.26 dm³/d oraz w reaktorze PR - 0.19 dm³/d.

Zawartość metanu w ujmowanym biogazie z odpadów przed i po biologicznym przetworzeniu początkowo szybko rosła a następnie utrzymywała się na stałym poziomie lub okresowo wolno rosła (rys. 32). Okres produkcji biogazu o stabilnym udziale metanu najszybciej rozpoczął się w reaktorach P i PR od 419 dniu badań, podczas gdy w reaktorach S i SR w 455 dniu. W okresie stabilnej fermentacji metanowej zawartość metanu w biogazie z reaktorów odpadów przekompostowanych była wyraźnie wyższa niż z reaktorów odpadów surowych; w reaktorze PR wahała od 60.1 do 79.4%, w reaktorze P od 59.0 do 69.9%, w reaktorze SR od 55.9 do 67.9%, a w reaktorze S od 52.4 do 63.3%.

Rys. 32. Zawartość metanu w biogazie z reaktorów S, SR, P i PR

Produkcja metanu z odpadów nieprzetworzonych biologicznie była wyraźnie wyższa od produkcji z odpadów przetworzonych biologicznie (rys. 33). Produkcja metanu z reaktora SR w porównaniu do produkcji z reaktora PR była o 17% wyższa, a produkcja metanu z reaktora S o 9% wyższa niż z reaktora P.

Rys. 33. Całkowita produkcja metanu w reaktorach S, SR, P i PR

5.3. Badania w skali technicznej

5.3.1. Ilość powstających odcieków

Średnie ilości opadów atmosferycznych i odcieków ujętych z zasobni S i P, w kolejnych miesiącach badań, przedstawiono na rysunku 34 (Załącznik 1).

Uzyskane wyniki badań wskazują na bardzo duże ilości powstających odcieków w stosunku do ilości opadów atmosferycznych oraz dużą zmienność ich produkcji w czasie. Średnie miesięczne ilości odcieków z odpadów nieprzetworzonych stanowiły od 26.7 do 338% opadu miesięcznego, a z odpadów przetworzonych od 14.0 do 327%.

Najwyższe ilości odcieków w stosunku do opadów, przewyższające ponad trzy krotnie średnie miesięczne wielkości opadów, powstały w marcu 2005 roku (rys. 34). Wysoki udział odcieków w stosunku do odpadów atmosferycznych, sięgający około 100% opadu miesięcznego, odnotowano w miesiącach luty i grudzień w 2004 r. oraz styczeń, czerwiec i październik w 2005 r.

Rys. 34. Średnie miesięczne objętości opadów atmosferycznych i odcieków określone dla zasobni odpadów nieprzetworzonych i przetworzonych biologicznie

Na rysunku 35 przedstawiono sumowe krzywe opadów atmosferycznych i ilości odcieków. Łączna objętość opadów atmosferycznych, która trafiła do każdej zasobni, w całym okresie badań, wyniosła 248 m³.

Rys. 35. Krzywe sumowe objętości opadów atmosferycznych oraz ujmowanych odcieków dla zasobni odpadów nieprzetworzonych i przetworzonych biologicznie

Łączne objętości odcieków zebrane z zasobni ZOK i zasobni BPOK były bardzo wysokie i stanowiły odpowiednio 77.8 i 50.4 % objętości opadów atmosferycznych. Objętości odcieków z zasobni ZOK była o 35% wyższa od objętości odcieków z zasobni BPOK.

5.3.2. Stężenia zanieczyszczeń w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

Zawartości wybranych zanieczyszczeń w odciekach z zasobni ZOK i BPOK w okresie prowadzenia badań przedstawiono na rysunkach 36–46 (Załączniki 3, 5).

5.3.2.1 Zanieczyszczenia organiczne

ChZT

ChZT odcieków ze ZOK wahały się od 470 do 6600 mg O_2/dm^3 , a odcieków z BPOK od 350 do 2100 mg O_2/dm^3 . Wysokie wartości ChZT w odciekach ze ZOK (>2000 mg O_2/dm^3) występowały w okresie od 1 do 23 dnia trwania pomiarów. W tym czasie ChZT odcieków z BPOK nie przekraczało wartości 800 mg O_2/dm^3 (rys. 36).

Rys. 36. Zmiany wartości ChZT w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

OWO

Stężenia OWO w odciekach ze ZOK i z BPOK były porównywalne w całym czasie trwania badań, poza okresem pierwszych 23 dni, w którym zawartości OWO w odciekach ze ZOK była kilkakrotnie wyższe niż w odciekach z BPOK. Stężenia OWO w odciekach ze ZOK wahały się od 183 do 2120 mg/dm³, a w odciekach z BPOK od 108 do 873 mg/dm³ (rys. 37).

Rys. 37. Zmiany stężeń OWO w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

BZT₅

BZT₅ odcieków z zasobni S, w początkowym okresie prowadzenia badań (od 1 do 115 dnia) było zdecydowanie wyższe niż w odciekach z zasobni P (rys. 38). W tym okresie wartości BZT₅ w odciekach z zasobni odpadów nieprzetworzonych biologicznie wahały się od 350 do 4600 mg O_2/dm^3 , podczas gdy w odciekach z zasobni odpadów przetworzonych wahało się od 14.6 do 312 mg O_2/dm^3 . W pozostałym okresie badań wartości BZT₅ w odciekach z obu zasobni były podobne, i mieściły się w zakresie od 160 do 1.1 mg O_2/dm^3 .

LKT

Stężenia LKT w odciekach z zasobni ZOK i BPOK przez cały okres prowadzenia badań wahały się w szerokim zakresie wartości (rys. 39). Odcieki z zasobni S zawierały więcej LKT niż odcieki z zasobni P. Wysokie stężenia LKT w odciekach z zasobni ZOK pojawiały się punktowo przez cały okres prowadzenia badań, w dniu 16–420 mg/dm³, 61–720 mg/dm³, 283–287 mg/dm³, 312–320 mg/dm³, 439–291 mg/dm³ oraz 817–320 mg/dm³. W pozostałych próbkach odcieków pobranych z zasobni ZOK, stężenia LKT nie przekraczały wartości 200 mg/dm³. W odciekach z zasobni BPOK nie zaobserwowano tak dużej zmienności stężeń LKT jak w odciekach z zasobni ZOK. Stężenia LKT w odciekach z tej zasobni, przez cały okres prowadzenia badań, nie przekraczały 200 mg/dm³.

Rys. 38. Zmiany wartości BZT_5 w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

Rys. 39. Zmiany stężeń LKT w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

5.3.2.2 Azot ogólny i azot amonowy

Azot ogólny

Stężenia azotu ogólnego w odciekach ze ZOK wahały się od 28 do 812 mg/dm³, a w odciekach z BPOK od 23.1 do 184 mg/dm³. Wyraźnie wyższe zawartości azotu ogólnego w odciekach ze ZOK niż w odciekach z BPOK obserwowano w pierwszych 3 miesiącach trwania pomiarów oraz w okresach od 412 do 517 dnia i między 776 i 853 dniem (rys. 40).

Azot amonowy

Przebieg zmian stężeń azotu amonowego w odciekach ze ZOK i z BPOK kształtował się podobnie jak azotu ogólnego (rys. 41). Stężenia azotu amonowego w odciekach z zasobni S i P przyjmowały podobne wartości, poza początkowym okresem badań (od 1 do 108 dnia), w którym były kilkakrotnie wyższe, oraz okresami od 419 do 559 i od 776 do 817 dnia, w którym były do 2-ch razy wyższe. Stężenia azotu amonowego w odciekach ze ZOK zmieniały się od 3.0 do 525 mg/dm³, a w odciekach z BPOK od 4.2 do 126 mg/dm³.

Rys. 40. Zmiany stężeń azotu ogólnego w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

Rys. 41. Zmiany stężeń azotu amonowego w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

5.3.2.3 Zanieczyszczenia mineralne

Chlorki

Analizując zmiany stężeń chlorków w odciekach ze ZOK i z BPOK można wyróżnić dwa okresy: okres wzrostu wartości, który trwał do 621 dnia (w odciekach z zasobni S) oraz do 672 dnia pomiarów (w odciekach z zasobni P), oraz okres ich spadku w końcowym okresie badań (rys. 42). W pierwszym okresie stężenia chlorków w odciekach ze ZOK i z BPOK wahały się w szerokim zakresie wartości, odpowiednio: od 547 do 1550 mg/dm³ oraz od 268 do 2000 mg/dm³. W okresie drugim stężenia chlorków malały od 1575 do 800 mg/dm³ w odciekach z zasobni S oraz od 1950 do 1050 mg/dm³ w odciekach z zasobni P.

Siarczany

Zmiany stężeń siarczanów w odciekach ze ZOK i z BPOK, w czasie trwania badań, przebiegały podobnie. Wyróżnić można 4 charakterystyczne okresy (rys. 43):

o okres I – wzrostu stężeń siarczanów w odciekach, który trwał w zasobni ZOK do 368 dnia (ze skokowo zmieniającymi się stężeniami w przedziale od 134 do 2595 mg/dm³), a w zasobni BPOK do 368 dnia (z wahaniami stężeń w zakresie od 231 do 2601 mg/dm³);

- o okres II spadku stężeń siarczanów w odciekach: w zasobni ZOK od 396 do 456 dnia (ze skokowymi zmianami stężeń w zakresie od 1448 do 226 mg/dm³), a w zasobni BPOK od 396 do 503 dnia (ze stężeniami wahającymi się skokowo w przedziale od 2587 do 898 mg/dm³);
- okres III ponownego wzrostu stężeń siarczanów w odciekach: w zasobni ZOK trwał on od 462 do 621 dnia (stężenia siarczanów wahały się skokowo w zakresie od 485 do 2430 mg/dm³), a w zasobni BPOK od 517 do 586 dnia (zakres zmian stężeń od 1793 do 2599 mg/dm³);
- okres IV ponownego spadku stężeń siarczanów w odciekach: w zasobni ZOK trwał od 637 do 686 dnia (zakres skokowych zmian stężeń od 2067 do 894 mg/dm³), a w zasobni BPOK od 600 dnia do końca trwania badań (ze stężeniami siarczanów wahającymi się skokowo w przedziale od 2283 do 980 mg/dm³).

Dla odcieków ze ZOK można wyróżnić kolejny piąty okres ponownego wzrostu stężeń siarczanów, który trwał od 713 dnia do końca badań (zakres zmian stężeń siarczanów od 977 do 1438 mg/dm³).

Rys. 42. Zmiany stężeń chlorków w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

Rys. 43. Zmiany stężeń siarczanów w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

5.3.2.4 pH, potencjał redoks i zasadowość

pН

Zmiany pH w odciekach z zasobni odpadów przed i po mechaniczno-biologicznym przetworzeniu, w całym okresie obserwacji, przyjmowały zbliżone wartości (rys. 44). Od pierwszego dnia do końca badań pH odcieków wykazywało prawie liniowy spadek od wartości około 8 do wartości 6.9 i 6.8 odpowiednio w odciekach z zasobni S i P.

Potencjał redoks

Wartości potencjału redoks w odciekach z zasobni S i P przez cały okres badań charakteryzowały się dużą zmiennością (rys. 45). Najniższe wartości potencjału redoks oznaczono w odciekach z zasobni S w pierwszym dniu badań (-596 mV), a z zasobni P w 4 dniu (-420 mV). Do 18 dnia badań wartości potencjału w odciekach z zasobni S i P szybko rosły do 5 i -54 mV, odpowiednio i następnie szybko malały do -90 i -117 mV w 56 dniu badań. W kolejnych dniach wartości potencjału redoks w odciekach ze ZOK i z BPOK charakteryzowały się dużą zmiennością z wyraźną tendencją wzrostu od około -100 do około 10 mV w 368 dniu badań. W 396 dniu wartość potencjału w odciekach z zasobni S gwałtownie wzrosła do 55 mV, po czym skokowo zmalała do -356 mV w 432 dniu i ponownie wzrosła do -17 mV w 517 dniu badań.

Rys. 44. Zmiany pH w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

Rys. 45. Zmiany potencjału redoks w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

Od dnia 517 do końca badań wartości potencjału redoks w odciekach z zasobni S zamieniały się w szerokim zakresie od wysokich wartości (-10 mV w 685 dniu) do niskich (-243 mV w

559 dniu badań). W odciekach z zasobni P, przeciwnie do odcieków z zasobni S, od 396 do 517 dnia badań wartości potencjału redoks utrzymywały się na poziomie około 8 mV i następnie, tak jak w zasobni S, skokowo malały od wartości wysokich (53 mV w 685 dniu) do niskich (– 318 mV w 853 dniu).

Zasadowość

Analizując przebieg zmian zasadowości w odciekach z zasobni S można wyróżnić pięć okresów (rys. 46):

- krótki okres wysokich, stałych wartości zasadowości (około 3.50 g CaCO₃/dm³), który trwał od 1 do 10 dnia badań,
- o okres szybkiego spadku zasadowości (od 10 do 73 dnia) od 3.5 do 0.81 g CaCO₃/dm³,
- okres niskich zasadowości (od 73 do 368 dnia obserwacji) od 0.37 do 1 g CaCO₃/dm³, poza dniami 98 (2.5 g CaCO₃/dm³) i 174 (1.5 g CaCO₃/dm³),
- o okres intensywnego wzrostu zasadowości (od 368 do 432 dniu badań) od 0.72 do 4.75 g CaCO₃/dm³,
- o okres wolnego spadku zasadowości do 0.7 g CaCO₃/dm³ w ostatnim dniu badań.

Rys. 46. Zmiany zasadowości odcieków z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu

W przypadku zmian zasadowości w odciekach z zasobni P można wyróżnić dwa okresy:

- o okres niskich wartości zasadowości od 0.26 do 1.25 CaCO₃/dm³ (od 1 do 368 dnia pomiarów),
- o okres szybkiego wzrostu zasadowości (od 368 do 448 dnia badań) od 0.56 do 2.25 g CaCO₃/dm³ oraz następujący po nim okres wolnego jej spadku do wartości 0.7 g CaCO₃/dm³ w ostatnim dniu badań, podobnie jak w odciekach z zasobni S.

6. Opracowanie wyników

Dynamikę zmian emisji zanieczyszczeń z odpadów przed i po mechaniczno-biologicznym przetworzeniu opisano wykorzystując model stochastyczny Zacharofa'a i Butler'a [120] zmodyfikowany dla potrzeb pracy oraz program komputerowy Mathematica 4.1., który wykorzystano do obliczeń numerycznych. W modelu Zacharof'a, zmiany masy organicznej w odpadach, wyrażono za pomocą czterech równań (40, 41, 42 i 43), odzwierciedlających kolejne fazy rozkładu odpadów, przebiegające na składowisku (punkt 2.1.).

W pracy wykorzystując model, wyniki badań (Załączniki 4, 6, 9, 11, 13 i 15) oraz program numeryczny obliczono wartości współczynników k_h, k_a, k_m określających dynamikę rozkładu odpadów, oraz przedstawiono prognozę zmian zawartości węgla organicznego odpadach oraz prognozę emisji zanieczyszczeń w odciekach i biogazie dla długoterminowego okresu obserwacji.

6.1. Zmodyfikowany model matematyczny

Modyfikację modelu Zacharof'a przeprowadzono poprzez dodanie do prawych stron pierwszych dwóch równań (równanie 40, 41) losowego składnika zaburzenia procesu, postaci:

$$\gamma(t)m_{i(s)}W_t, \tag{46}$$

gdzie: $\gamma(t)$ - funkcja losowa; $(W(t))_{t\geq 0}$ - funkcja opisująca wszystkie zaburzenia wpływające na wynik przebiegającego proces (tzw. "biały szum").

Dodanie członu do równań (40), (41) pozwoliło na uwzględnienie trudnych do ustalenia czynników wpływających na proces, wynikających ze złożoności procesów przebiegających na składowisku i heterogeniczności złoża odpadów, w postaci czynników losowych, tworzących przestrzeń probabilistyczną (Ω, F, P), w której: F jest rodziną wszystkich podzbiorów zbioru Ω , zawierającego wszystkie czynniki losowe zaburzające procesy przebiegające w złożu składowiska, zaś P jest prawdopodobieństwem określającym jak często wyróżniony zespół czynników $A \in F$ pojawia się w obserwowanym procesie.

Ponieważ rozwiązywanie funkcji opisujących "biały szum" (46) stwarza duże problemy teoretyczne zostały one zapisywane w postaci stochastycznego równania różniczkowego Ito [74] postaci:

$$dX_t = f(t, X_t)dt + g(t, X_t)dB_t; X_0 = x_0.$$

gdzie: x₀ - zmienna losowa; f i g - dane rzeczywiste funkcje zmiennych $(t, x) \in [0, \infty) xR$; $(B_t)_{t \ge 0}$ - ruchu Browna charakteryzującego losowe zaburzenia "białego szumu".

Równania opisujące dynamikę zmiany masy odpadów w złożu składowiska przyjmują, zatem postać:

zmiana masy odpadów zdeponowanych na składowisku

$$dm_{i(s)}t = -k_h(t)m_{i(s)}(t)dt + \gamma(t)m_{i(s)}(t)dB_t,$$
(47)

zmiana masy odpadów w fazie hydrolitycznej

$$dm_{i(Aq)}(t) = \left(k_h(t)m_{i(s)}(t) - A_a(t)te^{-tka(t)}\right)dt - \gamma(t)m_{i(s)}(t)dB_t,$$
(48)

zmiana masy odpadów w fazie acetogennej

$$dm_{i(Ac)}(t) = (A_a(t)te^{-tka(t)} - A_m(t)te^{-tkm(t)})dt,$$
(49)

zmiana masy odpadów w fazie metanogennej

$$dm_{i(Me)}(t) = A_m(t)te^{-tkm(t)}dt,$$
(50)

gdzie: A_a , A_m , k_h , k_a i k_m , oznaczają parametry funkcyjne opisujące szybkość przemian biochemicznych przebiegających w złożu odpadów.

W proponowanym modelu A_a , A_m , k_h , k_a i k_m , traktowane są jako nieznane dodatnie skokowe funkcje deterministyczne postaci:

$$A_{a} = \mathbf{I}_{[0,t]} u_{1} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]} u_{j}$$

$$A_{m} = \mathbf{I}_{[0,t_{1}]} v_{1} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]} v_{j}$$

$$k_{h} = \mathbf{I}_{[0,t_{1}]} k_{h}^{1} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]} k_{h}^{1}$$

$$k_{a} = \mathbf{I}_{[0,t]} k_{a}^{1} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]} k_{a}^{1}$$

$$k_{m} = \mathbf{I}_{[0,t]} k_{m}^{1} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]} k_{m}^{1}$$

$$\mathbf{I}_{(t_{r-1},t_{j}]} (t) = \begin{cases} 1 \ dla \ t_{j-1} \leqslant t \le t_{j} \\ 0 \ dla \ t \not \in (t_{j-1},t_{j}] \end{cases}$$

Z powyższych definicji wynika, że dla $t \in (t_{j-1}, t_j]$, $k_h(t) = k_h^j$, $k_a(t) = k_a^j$, $k_m(t) = k_m^j$, gdzie k_h^j , k_a^j , k_m^j są to pewne liczby, które należy odpowiednio ustalić. Podobnie dla $t \in (t_{j-1}, t_j], A_a(t) = u_j$ oraz $A_m(t) = v_j$, gdzie u_j i v_j są liczbami, które należy odpowiednio dobrać.

W przedstawionych wyżej definicjach przedział czasowy [0,T] jest okresem, w którym były prowadzone analizy zmiany ładunku węgla usuwanego w odciekach i biogazie w wyróżnionych momentach czasowych $0 < t_1 < t_2 < < t_r = T$. Ponadto w równaniach (47) -(48) rozpatrywana funkcja $\gamma(t)$, jest funkcją deterministyczną (nie losową) postaci:

$$\gamma = \mathbf{I}_{[0,t_1]} \gamma_1 + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_j]} \gamma_j$$

gdzie: $\gamma_1,...,\gamma_r$ - liczby odpowiednio dobrane zgodnie z zasadami przedstawionymi w dalszej części pracy.

Podstawowym problemem związanym z wyznaczaniem wymienionych wyżej mas, na podstawie pomiarów ich wartości w chwilach $0 < t_1 < t_2 < < t_r = T$, jest wyznaczanie funkcji A_a , A_m , k_h , k_a i k_m . Wiąże się to z odpowiednim ustaleniem liczb A_a^j , A_m^j , k_h^j , k_a^j , k_m^j , dla j = 1,...,r, tak by funkcje $m_{i(s)}$, $m_{i(Aq)}$, $m_{i(Ac)}$, $m_{i(Me)}$ wyznaczane równaniami (47) – (50) przyjmowały w punktach $0 < t_1 < t_2 < < t_r = T$ wartości uzyskane eksperymentalnie w ramach ich pomiarów.

Funkcję k_h można wyznaczyć metodą doboru najlepszego estymatora w każdym przedziale $(t_{j-1}, t_j]$. Problem ten rozwiązano sprowadzając go do problemu filtracji, który scharakteryzowano następująco.

Założono, że obserwowany proces stochastyczny $(Z_t)_{t\geq 0}$ zależny od procesu $(X_t)_{t\geq 0}$ spełniającego równanie:

$$dZ_t = c_t(X_t)dt + \gamma_t(X_t)dV_t, Z_o = 0,$$

gdzie: $(V_t)_{t\geq 0}$ - ruch Browna na przestrzeni (Ω, F, P) niezależny od ruchu Browna $(B_t)_{t\geq 0}$, $(X_t)_{t\geq 0}$ - funkcja spełniająca równanie: $dX_t = b_t(X_t)dt + \delta_t(X_t)dB_t$.

Problem filtracji polega na wyznaczeniu, na podstawie obserwacji procesu $(Z_t)_{t\geq 0}$, procesu $(\hat{X}_t)_{t\geq 0}$ określonego na przestrzeni (Ω, F, P) , takiego, że:

$$E \Big| X_t - \hat{X}_t \Big|^2 = \inf \Big\{ E \big| X_t - Y \big|^2 : Y \in K \Big\},$$

gdzie: $K = \{Y : \Omega \to R : Y \in L^2(\Omega, E, P)\}$, zaś $L^2(\Omega, E, P)$, oznacza przestrzeń wszystkich zmiennych losowych Y określonych na przestrzeni (Ω, F, P) takich, że $EY \le \infty$ oraz, że jest F_t -

mierzalny, gdzie F_t oznacza najmniejszą σ -algebrą przedziałów zbioru Ω zawierającą zbiory $\{Z_s^{-1}(A); 0 \le s \le t, A \in B(R)\}$, dla których $Z_s^{-1}(A) = \{\omega \in \Omega : Z_s(\omega) \in A\}$ dla dowolnego zbioru bolerowskiego A prostej R, a B(R) jest rodziną wszystkich zbiorów bolerowskich prostej R.

Żądanie, aby Y było zmienną losową F_t mierzalną wyraża fakt, że Y jest określone na podstawie obserwacji zmiennych losowych $\{Z_s: 0 \le s \le t\}$.

Zmienną losową \hat{X}_t spełniającą wyżej wymienione warunki nazywamy najlepszym estymatorem wyznaczonym na podstawie obserwacji procesu $(Z_t)_{t\geq 0}$. Problem filtracji rozwiązuje się w oparciu o twierdzenie Kolmana-Bucy [74].

<u>Twierdzenie Kolmama-Bucky.</u> Niech $C, D, F, G: [0, \infty) \rightarrow R$ będą funkcjami mierzalnymi i określonymi na przedziale [0,T] dla dowolnego T > 0 i niech D(t) > M dla $t \ge 0$ i pewnego $M \ge 0$.

Rozpatrzmy procesy $(X_t)_{t\geq 0}$ i $(Z_t)_{t\geq 0}$ spełniające równanie:

$$dX_t = F(t)X_t dt + C(t)dU_t,$$

$$dZ_t = G(t)X_t dt + D(t)dV_t,$$

gdzie: $(U_t)_{t\geq 0}$ i $(V_t)_{t\geq 0}$ są stochastycznie niezależnymi ruchami Browna na przestrzeni (Ω, F, P) .

Proces $(\hat{X}_t)_{t\geq 0}$ określający najlepsze estymatory zmiennych losowych X_t dla $t \geq 0$ określonych na podstawie obserwacji procesu $(Z_t)_{t\geq 0}$ spełnia równanie:

$$\begin{cases} d\hat{X}_t = \left(F(t) - \frac{G^2(t)S(t)}{D^2(t)}\right)\hat{X}_t dt + \frac{G(t)S(t)}{D^2(t)} dZ_t,\\ \hat{X}_o = EX_o \end{cases}$$

gdzie, $S(t) = E(X_t - \hat{X}_t)^2$ spełnia równanie Riccatiego:

$$\begin{cases} dS(t) = 2F(t)S(t) - \frac{G^2(t)}{D^2(t)}S^2(t) + C^2(t) \\ S_{(o)} = E(X_o - EX_o)^2 \end{cases}$$

6.1.1. Wyznaczanie najlepszego estymatora dla k_h

W celu określenia najlepszego estymatora nieznanej funkcji k_h na podstawie pomiarów zmian wartości masy biodegradowalnej $m_{i(s)}(t_j)$ w punktach $t_j \in [0,T]$, wyznacza się najlepsze estymatory \hat{k}_h^j dla liczb k_h^j , będących wartością funkcji k_h w punktach $t_j \in [0,T]$. W tym celu rozpatrzono na wstępie to zagadnienie w przedziale $[0,t_1]$. Równanie (35) rozwiązano w przedziale $[0, t_1]$ zakładając, że znana jest wartość początkowa masy $m_{i(s)}(0) = m_o$. W podobny sposób jak w pracy Oksedal'a [2000], otrzymano rozwiązanie równania (47) z warunkiem początkowym $m_{i(s)}(0) = m_o$ postaci:

$$m_{i(s)}(t) = m_o \exp\left[-k_h^1 t - \frac{1}{2}\gamma_1^2 t + \gamma_1 B_t\right] dla \ 0 \le t \le t_1.$$

Wprowadzając oznaczenie $Z_t = \ln\left(\frac{m_{i(s)}(t)}{m_o}\right)$ otrzymujemy $Z_o = 0$ oraz

$$Z_{t} = -\int_{0}^{t} \left(k_{h}^{1} + \frac{1}{2} \gamma_{1}^{2} \right) d\tau + \int_{0}^{t} \gamma_{1} dB_{t} dla \ t \in [0, t_{1}]$$

Równanie to można zapisać w równoważnej postaci różniczkowej jako równanie stochastyczne z warunkiem początkowym:

$$\begin{cases} dZ_t = -(k_h^1 + \frac{1}{2}\gamma_1^2)dt + \gamma_1 dB_t \\ Z_o = 0 \end{cases}$$
(51)

Kładąc $\theta = (k_h^1 + \frac{1}{2}\gamma_1^2)$ otrzymano $d\theta = 0$. Stąd dla równania (51) uzyskano:

$$\begin{cases} d\theta_o = 0 \\ dZ_t = -\theta dt + \gamma_1 dB_t \end{cases}$$

Tak jak w pracy Oksendal'a [74] możemy określić najlepszy estymator $\hat{\theta}_t$ dla θ wzorem:

$$\hat{\theta}_{t} = \frac{\hat{\theta}_{o} S_{o}^{-1} - \int_{0}^{t} \gamma_{1}^{-2} dZ_{t}}{S_{o}^{-1} + \gamma_{1}^{-2} t} = \frac{\hat{\theta}_{o} S_{o}^{-1} - \gamma_{1}^{-2} \ln\left(\frac{m_{i(s)}(t)}{m_{o}}\right)}{S_{o}^{-1} + \gamma_{1}^{-2} t} = \frac{S_{o}^{-1} + \gamma_{1}^{-2} \ln\left(\frac{m_{o}}{m_{i(s)}(t)}\right)}{S_{o}^{-1} + \gamma_{1}^{-2} t},$$

gdzie: $\hat{\theta}_{o}$ - warunek początkowy ustalony na podstawie wyników eksperymentalnych, $S_{o} = S(0)$ określona wzorem: $S(t) = \frac{1}{S_{o}^{-1} + \gamma_{1}^{-2}t}$ - dokładność przybliżenia $\hat{\theta}_{t}$ dla θ w sensie średniokwadratowym, tzn.:

wadratowym, tzn..

W dalszych rozważaniach założono, że $S_o = E \left| \theta - \hat{\theta}_o \right|^2$ spełnia warunek $S_o > 0$. Ponadto, na

 S_o i γ_1 , nałożono dodatkowe warunki pozwalające efektywnie wyznaczyć $\hat{\theta}_t$.

Estymator \hat{k}_h^1 dla k_h^1 określono wzorem: $\hat{k}_h^1 = \hat{\theta}_t - \frac{1}{2}\gamma_1^2$, jest to najlepszy estymator dla k_h^1 bowiem:

$$E\left|k_{h}^{1}-\hat{k}_{h}^{1}\right|^{2}=E\left|\left(k_{h}^{1}+\frac{1}{2}\gamma_{1}^{2}\right)-\left(\hat{k}_{h}^{1}+\frac{1}{2}\gamma_{1}^{2}\right)\right|^{2}=E\left|\theta-\hat{\theta}_{t}\right|^{2}=S(t)$$

dla $0 \le t \le t_1$. Korzystając ze wzorów określających $\hat{\theta}_t$ i \hat{k}_t , najlepszy estymator \hat{k}_h^1 ostatecznie określono wzorem:

$$\hat{k}_{h}^{1} = \frac{\left(\hat{k}_{o}^{1}(0) + \frac{1}{2}\gamma_{1}^{2}\right)S_{o}^{-1} + \gamma_{1}^{-2}\ln\left(\frac{m_{o}}{m_{1}}\right)}{S_{o}^{-1} + \gamma_{1}^{-2}t} - \frac{1}{2}\gamma_{1}^{2},$$

dla $0 \le t \le t_1$, gdzie m_1 oznacza masę $m_{i(s)}$ wyznaczoną eksperymentalnie w chwili $t = t_1$.

Wstawiając $\hat{k}_h^1(t)$ do równania (47) w miejsce $k_h(t)$ otrzymano następujące rozwiązanie tego równania z warunkiem początkowym $m_{i(s)}(0) = m_o$:

$$\hat{m}_{i(s)}(t) = m_{o} \exp\left[-\int_{0}^{t} \left(\hat{k}_{h}^{1}(\tau) + \frac{1}{2}\gamma_{1}^{2}\right) d\tau + \gamma_{1}B_{t}\right] d\ln 0 \le t \le t_{1}.$$

Kontynuując powyższe postępowanie określono najlepszy estymator \hat{k}_h dla k_h ustalony na przedziale $(t_{j-1}, t_j]$ wzorem:

$$\hat{k}_{h}^{j}(t) = \frac{\left(\hat{k}_{h}^{j-1}(t_{j-1}) + \frac{1}{2}\gamma_{j}^{2}\right)S_{j-1}^{-1} + \gamma_{j}^{-2}\ln\left(\frac{m_{j-1}}{m_{j}}\right)}{S_{j-1}^{-1} + \gamma_{j}^{-2}(t-t_{j-1})} - \frac{1}{2}\gamma_{j}^{2},$$
(52)

gdzie: m_{j-1} i m_j - wartości masy $m_{i(s)}$ wyznaczone eksperymentalnie w chwilach $t = t_{j-1}$ i $t = t_j$, odpowiednio.

Przyjmując $\hat{k}_h(t) = \mathbf{I}_{\{0\}}(t)\hat{k}_o + \sum_{j=2}^r \mathbf{I}_{(t_{j-1},t_j)}\hat{k}_h^j$ dla $0 \le t \le T$ otrzymano najlepszy estymator dla k_h w przedziale [0,T].

6.1.1.1 Procedura wyznaczania wartości najlepszego estymatora dla k_h .

Wyznaczanie wartości $k_h^j = \hat{k}_h^j$ bezpośrednio ze wzoru (52) może prowadzić do skomplikowanych obliczeń, wymagających szeregu dodatkowych ograniczeń. Dlatego w pracy zastosowano uproszczoną procedurę prowadzącą do algorytmów akceptowalnych w obliczeniach komputerowych.

Niech $a_j = \ln\left(\frac{m_{j-1}}{m_j}\right)$ dla j = 1, 2, 3, ..., r, gdzie m_{j-1} i m_j są wartościami masy $m_{i(s)}$

wyznaczonymi eksperymentalnie w chwilach $t = t_{j-1}$ i $t = t_j$, odpowiednio. Bezpośrednio z równania (47) otrzymujemy:

$$m_j = m_{j-1} \exp\left(-k_h^j \delta_j - \frac{1}{2} \gamma_j^2 \delta_j + \gamma_j \left(B_{t_j} - B_{t_{j-1}}\right)\right),$$

gdzie: $\delta_j = t_j - t_{j-1}$.

Stąd, wobec faktu, że $E(B_{t_j} - B_{t_{j-1}}) = 0$ otrzymano:

$$\ln\!\left(\frac{m_j}{m_{j-1}}\right) = -k_h^j \delta_j - \frac{1}{2} \gamma_j^2 \delta_j,$$

co można zapisać w postaci równania:

$$a_j = k_h^j \delta_j + \frac{1}{2} \gamma_j^2 \delta_j.$$
⁽⁵³⁾

Z drugiej strony z faktu, że k_h^j i \hat{k}_h^j są stałymi zmiennymi losowymi (parametrami deterministycznymi) i spełniającymi związek:

$$S(t_j) = E\left(k_h^j - \hat{k}_h^j\right)^2 = \left(k_h^j - \hat{k}_h^j\right)^2,$$

gdzie: $S_{(t_j)}$ - rozwiązanie równania różniczkowego $S'(t) = -\gamma_j^2 S^2(t)$ w przedziale $(t_{j-1}, t_j]$ z warunkiem początkowym $S(t_{j-1}) = S_{j-1}$,

wynika, że:

$$(k_h^j)^2 - 2k_h^j \hat{k}_h^j + (\hat{k}_h^j)^2 - S_j = 0$$
,

gdzie: $S_j = S(t_j)$.

Rozważając to równanie względem k_h^j otrzymano:

$$k_h^j = \hat{k}_h^j - \sqrt{S_j}$$
 lub $k_h^j = \hat{k}_h^j + \sqrt{S_j}$

Stąd i z równania (53) wynika, że:

$$a_{j} = \left(\hat{k}_{h}^{j} - \sqrt{S_{j}}\right)\delta_{j} + \frac{1}{2}\gamma_{j}^{2}\delta_{j}.$$

W związku z tym otrzymano:

$$\hat{k}_h^j = \left(\frac{a_j}{\delta_j} - \frac{1}{2}\gamma_j^2\right) + \sqrt{S_j} .$$
(54)

Z definicji S_i wynika, że:

$$S_j = \frac{1}{S_{j-1}^{-1} + \gamma_j^{-2} \delta_j} \,. \tag{55}$$

Zatem, równanie (54) zapisano w postaci:

$$\hat{k}_{h}^{j} = \left(\frac{a_{j}}{\delta_{j}} - \frac{1}{2}\gamma_{j}^{2}\right) + \frac{1}{\sqrt{S_{j-1}^{-1} + \gamma_{j}^{-2}\delta_{j}}}.$$
(56)

Punktem wyjścia w procedurze wyznaczania wartości k_h jest ustalenie wartości początkowej $S_o > 0$, wyrażającej poziom dokładności najlepszego estymatora, oraz wybór wartości $\hat{\gamma}_1$, charakteryzującej intensywność zaburzeń losowych, w przedziale $[0, t_1]$. Przy czym, te wartości winny być tak dobrane by $S_o^{-1} + \gamma_1^{-2}\hat{\delta}_1 > 0$.

Pozwoliło to w oparciu o wzór (55), wyznaczyć wartość S_1 , a następnie w oparciu o wzór (41), wartość k_h . W kolejnym kroku wybrano γ_2 , charakteryzującą intensywność zaburzeń losowych, w przedziale w przedziale $(t_1, t_2]$. Przy tym powinien być spełniony warunek

$$S_1^{-1} + \hat{\gamma}_2^{-2} \delta_2 > 0$$
. Ogólnie wybór γ_j jest ograniczony warunkiem $S_{j-1}^{-1} + \hat{\gamma}_j^{-2} \delta_j > 0$, gdzie $\delta_j = t_j - t_{j-1}$.

Wartość γ_j można wyznaczyć na wiele sposobów. W oparciu o symulacje obliczeń komputerowych w pracy przyjęto, że $\hat{\gamma}_j \ge 0$ powinno być tak dobrane by spełniało

nierówność $S_{j-1}^{-1} + \hat{\gamma}_j^{-2} \ \delta_j > \frac{1}{4} \left(S_{j-1}^{-1} \right)^2 \hat{\gamma}_j^4$. Warunki te gwarantują, że $S_{j-1}^{-1} + \hat{\gamma}_j^{-2} \delta_j > 0$, ponieważ warunek $S_o > 0$ wraz z $\gamma_j \ge 0$ dla j = 1, 2, ..., r implikuje, że $S_j > 0$. Dzięki tak przyjętym ograniczeniom dotyczącym wyznaczania $\hat{\gamma}_j$ uzyskano prosty schemat obliczania wielkości zaburzeń losowych $\hat{\gamma}_j$. Mianowicie przyjęto $\hat{\gamma}_j = \sqrt{x_{j-1}}$, gdzie x_{j-1} oznacza najmniejsze dodatnie rozwiązanie nierówności:

$$\left(S_{j-1}^{-1}\right)^2 x^3 - 4S_{j-1}x - 4\delta_j < 0.$$
⁽⁵⁷⁾

Kontynuując powyższe postępowanie można wyznaczyć funkcję $\hat{k}_h(t)$ i $\hat{\gamma}(t)$ postaci:

$$\hat{k}_{h}(t) = \mathbf{I}_{\{0\}}(t) = \hat{k}_{o} + \sum_{j=1}^{r} \mathbf{I}_{(t_{j-1}, t_{j}]}(t) \hat{k}_{h}^{j}$$

oraz,

$$\hat{\gamma}_{j}(t) = \mathbf{I}_{\{0,t_{1}\}} \hat{\gamma}_{1} + \sum_{j=1}^{r} \mathbf{I}_{(t_{j-1},t_{j}]} \hat{\gamma}_{j}$$

Należy zwrócić uwagę, że nierówność $\gamma_j \ge 0$ dla j = 1, 2, ..., r implikuje $S_j \le S_o$ dla j = 1, 2, ..., r. Istotnie jeżeli $\gamma_1 \ge 0$ to wobec założenia, że $S_o > 0$ wówczas $S_o^{-1} + \gamma_1 \delta_1 \ge S_o^{-1}$, wobec tego zgodnie ze wzorem (40), otrzymano $S_1 = (S_o^{-1} + \gamma_1 \delta_1)^{-1} \le (S_o^{-1})^{-1} = S_o$. W podobny sposób otrzymano $S_2 \le S_1 \le S_o$, jeżeli $\gamma_2 \ge 0$. Kontynuując to postępowanie

otrzymano $S_j \le S_o$ dla j = 1, 2, ..., r, jeżeli $\gamma_j \ge 0$. Stąd oraz z warunku $\left(\hat{k}_h^j - k_h^j\right) = S_j$

wynika, że $\left| \hat{k}_h^j - k_h^j \right| \le \sqrt{S_j} \le \sqrt{S_o}$ dla j = 1, 2, ..., r, jeżeli $\gamma_j \ge 0$. Zatem dla $\gamma_j \ge 0$ otrzymano

$$k_h^j - \sqrt{S_o} \leq \hat{k}_h^j \leq k_h^j + \sqrt{S_o}$$

Stąd i z przyjętego na wstępie założenia, że $k_h^j > 0$ dla j = 1, 2, ..., r wynika, że wybierając dostatnie małe $S_o > 0$ tak, aby $k_h^{\min} - \sqrt{S_o} > 0$ będzie prawdziwa nierówność $0 < k_h^{\min} - \sqrt{S_o} \le k_h^j - \sqrt{S_o} \le \hat{k}_h^j$ dla j = 1, 2, ..., r, jeżeli $\gamma_j \ge 0$, gdzie $k_h^{\min} = \min_{1 \le j \le r} k_h^j$. Wobec tego warunek $\gamma_j \ge 0$ dla j = 1, 2, ..., r oraz wybór dostatecznie małego $S_o > 0$ implikują, że

 $\hat{k}_{h}^{j} > 0$ dla j = 1, 2, ..., r. W dalszych założeniach założono, że warunki te są spełnione. Ostatecznie wstawiając do równania (47) w miejsce $k_{h}(t)$ i $\gamma(t)$ wyznaczone wyżej funkcje \hat{k}_{h}^{j} i $\hat{\gamma}$ otrzymano jego rozwiązanie określone na przedziale [0,T] w postaci:

$$\hat{m}_{i(s)}(t) = m_{o} \exp\left[-\left(\int_{0}^{t} \hat{k}_{h}(\tau) + \frac{1}{2}\gamma_{(\tau)}^{2}\right)d\tau + \int_{0}^{t} \hat{\gamma}(\tau) dB_{\tau}\right].$$

Stąd wobec założenia o współczynniku \hat{k}_o otrzymujemy, że wartość oczekiwana $\bar{m}_j(t) = E \hat{m}_{i(s)}(t)$ rozwiązania $\hat{m}_{i(s)}$ spełnia zależność:

$$\bar{m}_{j} = E \,\hat{m}_{i(s)}\left(t\right) = m_{o} \exp\left[-\left(\int_{0}^{t_{j}} \hat{k}_{h}(\tau) + \frac{1}{2} \,\hat{\gamma}^{2}\left(\tau\right) d\tau\right)\right] \cdot Ee^{\int_{0}^{t_{j}} \hat{\gamma}(\tau) dB_{\tau}}.$$

Ale zgodnie z pracą Oksendal'a [74]:

$$Ee^{\int_{0}^{t_{j}}\hat{\gamma}(\tau)dB_{\tau}} = \exp\left[\frac{1}{2}\int_{0}^{t_{j}}\hat{\gamma}^{2}(\tau)d\tau\right].$$

Wobec tego:

$$\bar{m}_j = m_o \exp\left[-\int_{0}^{t_j} \hat{k}_h(\tau) d\tau\right].$$

Biorąc pod uwagę postać funkcji \hat{k}_h otrzymano:

$$\bar{m}_j = m_o \exp\left[-\sum_{i=1}^j \hat{k}_h^j \delta_i\right].$$

6.1.2. Wyznaczanie wartości prognozowanej masy $m_{i(s)}$

Aby wyznaczyć prognozowaną wartość wielkości oczekiwanej $\hat{E}_{m_i(s)}(\hat{T})$ w chwili T > Tnależy rozszerzyć definicję funkcji \hat{k}_h na cały przedział $[0,\infty)$. W tym celu należy zbadać w oparciu o wzór (47) ogólne własności tej funkcji w przedziale [0,T] i na tej podstawie określić charakter jej przedłużenia.

Z definicji funkcji $\hat{k}_{r}^{(r)}$ wynika, że:
$$\lim_{T \to \infty} E \, \hat{k}_h(T) = \lim_{T \to \infty} \frac{\gamma_r^{-2} E \ln\left(\frac{m_{r-1}}{m_r}\right)}{S_{r-1}^{-1} + \gamma_r^{-2} (T - t_{r-1})} - \frac{1}{2} \gamma_r^{2},$$

bo

$$\lim_{T \to \infty} \frac{\left(\hat{k}_h^{j-1} + \frac{1}{2}\gamma_j^2\right) S_{j-1}^{-1}}{S_{j-1}^{-1} + \gamma_r^{-2} \left(T - t_{r-1}\right)} = 0$$

Ponieważ m_{r-1} i m_r są stałymi zmiennymi losowymi, więc

$$E\ln\left(\frac{m_{r-1}}{m_r}\right) = \left(k_h^r + \frac{1}{2}\gamma_r^2\right)(T - t_{r-1}).$$

Stąd i z reguły d'Hospitala, otrzymano:

$$\lim_{T \to \infty} E \hat{k}_h(T) = \lim_{T \to \infty} \frac{\gamma_r^{-2} \left(\hat{k}_h^r + \frac{1}{2} \gamma_j^2 \right) (T - t_{r-1})}{S_{r-1}^{-1} + \gamma_r^{-2} (T - t_{r-1})} - \frac{1}{2} \gamma_r^2 = \\ = \lim_{T \to \infty} \frac{\gamma_r^{-2} \left(k_h^r + \frac{1}{2} \gamma_j^2 \right)}{\gamma_r^{-2}} - \frac{1}{2} \gamma_r^2 = \frac{\gamma_r^{-2} \left(\hat{k}_h^r + \frac{1}{2} \gamma_j^2 \right)}{\gamma_r^{-2}} - \frac{1}{2} \gamma_r^2 = k_h^{(r)}$$

Zatem funkcja \hat{k}_h jest funkcją skokową taką, że $\lim_{T \to \infty} E \hat{k}_h(T) = \hat{k}_h^r > 0$.

Z przeprowadzonej wyżej analizy własności funkcji k_h i \hat{k}_h w przedziale [0,T] wynika, że są to funkcje o wartościach dodatnich. Ponieważ $k_h^r = \hat{k}_h^r \pm \sqrt{S_r}$, więc $\lim_{T\to\infty} k_h(T) = \lim E \hat{k}_h(T) \pm \sqrt{S_r} = \hat{k}_h^r \pm \sqrt{S_r}$. Wobec tego przedłużając funkcję \hat{k}_h na przedziale $[T,\infty)$ przyjęto taką jej definicję na tym przedziale by przedłużenie to zachowało wyżej wymienione własności.

Punktem wyjścia konstrukcji takiej funkcji jest jej, dodatniość i posiadanie w plus nieskończoności granicy równej $\hat{k}_h^r + \sqrt{S_r}$. Przyjęto, że przedłużenie to określone jest wzorem:

$$\hat{k}_h(t) = \hat{k}_k^r + \int_T^t \tau \exp(-\tau a) d\tau ,$$

gdzie a > 0 należy tak dobrano by $\lim_{t\to\infty} \int_{T}^{t} \tau \exp(-\tau a) d\tau = \sqrt{S_r}$. Tak określona funkcja ma oczywiście dodatnie wartości. Aby wyznaczyć odpowiednio liczbę a > 0 należy przyjąć, Zacharof [120], że:

$$\int_{T}^{t} \tau \exp(-\tau a) d\tau = -\frac{1}{a} t e^{-at} - \frac{1}{a^2} (e^{-at} - 1) + \frac{T}{a} e^{-aT} + \frac{1}{a^2} (e^{-aT} - 1),$$
(58)

oraz

$$\lim_{t \to \infty} \left[-\frac{1}{a} + e^{-at} - \frac{1}{a^2} (e^{-at} - 1) \right] = -\frac{1}{a} \lim_{t \to \infty} \left[\frac{t}{e^{at}} - \frac{1}{a^2} \lim_{t \to \infty} \frac{1}{e^{at}} + \frac{1}{a^2} \right] = -\frac{2}{a^2} \lim_{t \to \infty} \frac{1}{e^{at}} + \frac{1}{a^2} = \frac{1}{a^2}$$
(59)

Zatem, aby $\lim_{t\to\infty} \int_{T}^{t} \tau \exp(-\tau a) d\tau = \sqrt{S_r}$ przyjęto, że liczba a > 0 spełniać będzie

równanie
$$\frac{1}{a^2} + \frac{T}{a}e^{-aT} + \frac{1}{a^2}(e^{-aT} - 1) = \sqrt{S_r}$$
, które zapisano w postaci
 $1 + Tae^{aT} + e^{-aT} - 1 = a^2\sqrt{S_r}$. Wybierając zatem $a > 0$ tak by
 $e^{-aT}(1 + Ta) = a^2\sqrt{S_r}$
(60)

określono funkcję k_h na przedziale $[T,\infty)$ wzorem:

$$\hat{k}_h(t) = \hat{k}_h^r + \int_T^t \tau \exp(-\tau a) d\tau.$$

Wstawiając ponownie w równaniu (47) w miejsce k_h funkcję \hat{k}_h określoną wzorem:

$$k_{h}(t) = \mathbf{I}_{\{0\}}(t)\hat{k}_{o} + \sum_{j=1}^{r} \mathbf{I}_{(t_{j-1},t_{j}]}(t)\hat{k}_{h}^{j} + \mathbf{I}_{(T,\infty)}\left(\hat{k}_{h}^{r} + \int_{T}^{t} \tau \exp(-\tau a)d\tau\right)$$

otrzymano prognozowaną wartość oczekiwaną $Em_{i(s)}(T)$ masy $m_{i(s)}$ w chwili $\hat{T} > T$:

$$\hat{E}_{m_i(s)}(\mathbf{T}) = \hat{E}_{m_i(s)}(T) \exp\left[\left(\hat{T} - \mathbf{T}\right)\hat{k}_h^r - \int_T^{\hat{T}} \left(\int_T^t \tau e^{-\tau u} d\tau\right) dt\right]$$
(61)

6.1.3. Równania wyznaczające wartości funkcji k_a, k_m, A_a, A_m

Dodając stronami równanie (48) i równanie (49) otrzymano:

$$d[m_{i(Aq)}(t) + m_{i(s)}(t)] = -u_j(t)te^{-k_{a_j}t}dt \, \mathrm{dla} \, 0 \le t \le T \,.$$
(62)

Całkując to równanie w przedziale $[t_{j-1}, t_j]$ otrzymano:

$$\Delta_{q}^{j} + \Delta_{s}^{j} = -\int_{t_{j-1}}^{t_{j}} \pi e^{-\tau k_{a}^{j}} d\tau \text{ gdzie } \Delta_{q}^{j} = m_{i(Aq)}(t_{j}) - m_{i(Aq)}(t_{j-1}),$$

oraz

$$\Delta_{s}^{J} = m_{i(s)}(t_{j}) - m_{i(s)}(t_{j-1}).$$

Ponieważ,

$$-\int_{t_{j-1}}^{t_j} \tau e^{-\tau k_a^j} d\tau = \left(\frac{t_j}{k_a^j} + \frac{1}{(k_a^j)^2}\right) e^{-t_j k_a^j} - \left(\frac{t_{j-1}}{k_a^j} + \frac{1}{(k_a^j)^2}\right) e^{-t_{j-1} k_a^j}$$

równanie wyznaczające współczynniki k_a^j i u_j ma postać:

$$u_{j}\left(\frac{t_{j}}{k_{a}^{j}}+\frac{1}{\left(k_{a}^{j}\right)^{2}}\right)e^{-t_{j}k_{a}^{j}}-u_{j}\left(\frac{t_{j-1}}{k_{a}^{j}}+\frac{1}{\left(k_{a}^{j}\right)^{2}}\right)e^{-t_{j-1}k_{a}^{j}}=\Delta_{q}^{j}+\Delta_{s}^{j},$$

którą zapisano również następująco:

$$u_{j}\left[e^{-t_{j}k_{a}^{j}}\left(1+t_{j}\cdot k_{a}^{j}\right)-e^{-t_{j-1}k_{a}^{j}}\left(1+t_{j-1}\cdot k_{a}^{j}\right)\right]=\alpha_{j}\left(k_{a}^{j}\right)^{2},$$
(62)

gdzie, $\alpha_j = \Delta_q^j + \Delta_s^j$.

Podobnie z równania (50) otrzymano równanie określające współczynniki k_m^j i v_j :

$$dm_{i(Me)}(t) = v_j \cdot e^{-tk_m^J} dt, \, \mathrm{dla} \ t_{j-1} \le t \le t_j.$$

$$(63)$$

Stąd w analogiczny sposób otrzymano zależność:

$$v_{j} \left[e^{-t_{j}k_{m}^{j}} \left(1 + t_{j} \cdot k_{m}^{j} \right) - e^{-t_{j-1}k_{m}^{j}} \left(1 + t_{j-1} \cdot k_{m}^{j} \right) \right] = \beta_{j} \left(k_{m}^{j} \right)^{2}, \tag{64}$$

gdzie $\beta_j = m_{i(Me)}(t_j) - m_{i(Me)}(t_{j-1})$.

Do otrzymanych wyżej równań dołączono dodatkowo równanie określające wzajemne relacje między współczynnikami k_a^j i k_m^j oraz u_j i v_j . Mogą one przybierać różną postać. Na podstawie symulacji obliczeń komputerowych przyjęto, że równania są następujące:

$$x + y - 0.34 = 0$$
 oraz $u - v + 0.174 = 0$,

gdzie $x = k_a^j$, $y = k_m^j$, $u = u_j$ i $v = v_j$.

Ostatecznie współczynniki k_a^j , k_m^j , u_j , v_j powinny spełniać układ równań:

$$\begin{cases} u \left[e^{t_j x} \left(1 + t_j x \right) - e^{t_{j-1} x} \left(1 + t_{j-1} x \right) \right] = \alpha_j x^2 \\ v \left[- e^{t_j y} \left(1 + t_j y \right) + e^{t_{j-1} y} \left(1 + t_{j-1} y \right) \right] = \beta_j y^2 \\ x + y - 0.34 = 0 \\ u - v + 0.174 = 0 \end{cases}$$
(65)

Wyznaczając rozwiązanie k_a^j , k_m^j , u_j , v_j , na podstawie powyższego układu równań otrzymano poszukiwane funkcje \hat{A}_a , \hat{A}_m , \hat{k}_a , \hat{k}_m , tak, że wartości rozwiązań równań (48) – (50) wyznaczone w punktach $t = t_1,...,t_r$ przybliżają wartości odpowiednich mas wyznaczone eksperymentalnie w tych punktach:

$$\hat{A}_{a}(t) = \mathbf{I}_{[0,t_{1}]}(t)u_{j} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]}(t)u_{j}$$
$$\hat{A}_{m}(t) = \mathbf{I}_{[0,t_{1}]}(t)v_{j} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]}(t)v_{j}$$
$$\hat{k}_{a}(t) = \mathbf{I}_{[0,t_{1}]}(t)\hat{k}_{a}^{(1)} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]}(t)\hat{k}_{a}^{(j)}$$
$$\hat{k}_{m}(t) = \mathbf{I}_{[0,t_{1}]}(t)\hat{k}_{m}^{(1)} + \sum_{j=2}^{r} \mathbf{I}_{(t_{j-1},t_{j}]}(t)\hat{k}_{m}^{(j)}$$

Wstawiając do równania (48) współczynniki \hat{k}_h , \hat{k}_a i \hat{A}_a w miejsce k_h , k_a i A_a otrzymano:

$$d\left[\hat{m}_{i(Aq)}(t) + \hat{m}_{i(s)}(t)\right] = -\hat{A}_{a}(t)te^{-\hat{k}_{a}^{j}t}dt.$$
(65)

Ponieważ $\hat{m}_{i(Aq)}(0) = 0$ i $\hat{m}_{i(s)}(0) = m_o$, zatem całkując powyższe równania w przedziale [0, t] otrzymano:

$$\hat{m}_{i(Aq)}(t) + \left[\hat{m}_{i(s)}(t) - m_{o}\right] = -\int_{0}^{t} A_{a}(\tau)\tau e^{-\tau \hat{k}_{a}(\tau)} d\tau,$$

Stąd wartość oczekiwana $E \hat{m}_{i(Aq)}$ funkcji $m_{i(Aq)}$ wynosi:

$$E \,\hat{m}_{i(Aq)}(t) = \left[m_{o} - E \,\hat{m}_{i(s)}(t) \right] - \sum_{i=1}^{j} u_{i} \int_{t_{i-1}}^{t_{i}} \tau e^{-\tau \hat{k}_{a}^{i}} d\tau \,.$$

Oznaczając $u_i \int_{t_{i-1}}^{t_i} \pi e^{-\tau \hat{k}_a^i} d\tau$ przez P_a^i dla $t \in (t_{j-1}, t_j]$, otrzymano:

$$\bar{m}_{q}(t) = E_{\hat{m}_{i}(Aq)}(t) = \left[m_{o} - E_{\hat{m}_{i}(s)}(t)\right] - \sum_{i=1}^{j} P_{a}^{(i)}.$$
(66)

Analogicznie, wstawiając do równań (49) i (50) współczynniki \hat{k}_a , \hat{k}_m , \hat{A}_a i \hat{A}_m w miejsce k_a , k_m , A_a i A_m , odpowiednio dla $[0, t_j]$ oraz oznaczając $v_i \int_{t_{i=1}}^{t_i} \tau e^{-\tau \hat{k}_m^i} d\tau$ przez P_m^i dla $t \in (t_{i-1}, t_i]$, otrzymano:

$$\hat{m}_{i(Ac)}(t) = \sum_{i=1}^{j} \left[\mathbf{P}_{a}^{i} - \mathbf{P}_{m}^{i} \right]$$
(67)

oraz

$$\hat{m}_{i(Me)}(t) = \sum_{i=1}^{j} \mathbf{P}_{m}^{i}$$
 (68)

Formuły określające wartości prognozowane $m_{Aq}(t_j) = Em_{Aq}(t_j)$, $m_{Ac}(t_j) = Em_{Ac}(t_j)$ i $m_{Me}(t_j) = Em_{Me}(t_j)$ można wyznaczyć na wiele różnych sposobów przyjmując w odpowiedni sposób wartości \hat{k}_a , \hat{k}_m , \hat{A}_a , \hat{A}_m dla t > T. W pracy założono, że \hat{k}_a , \hat{k}_m , \hat{A}_a , \hat{A}_m pokrywają się dla t > T ze średnią wartością tych współczynników w przedziale [0,T], tzn.,

$$\dot{z}e$$
 $\dot{k}_a(t) = \dot{s}rednia [k_a]$ oraz $\dot{k}_m(t) = \dot{s}rednia [k_m]$ $\dot{A}_a = \dot{s}rednia [A_a]$ i

 $A_m = \dot{s}rednia \ [A_m]$ dla t > T. Szczegóły przedstawionego postępowania ilustruje poniższy algorytm numeryczny i dołączony wydruk programu komputerowego (Załącznik 17).

6.1.4. Algorytm numeryczny wartości mas $m_{i(s)}$, $m_{i(Aq)}$, $m_{i(Ac)}$, $m_{i(Me)}$ i komputerowy program jego realizacji

Wykorzystując program komputerowy "Mathematica 4.1." wyznaczono wartości oczekiwane wyżej wymienionych mas w oparciu o następujący algorytm:

- I. Wprowadzenie list $\{m_o, m_1, ..., m_r\}$ zmierzonych wartości masy degradowanej $m_{i(s)}$ w chwilach $\{0, t_1, t_2, ..., t_r\}$ wyrażonych w latach.
- II. Wyznaczenie listy przyrostów $\{\delta_1, \delta_2, ..., \delta_r\}$ gdzie $\delta_j = t_j t_{j-1}; j = 1, 2, ..., r$.
- III. Ustalenie wartości parametru dokładności S_o zerowej aproksymacji współczynnika k_h^i

tak by
$$E \left| \hat{k}_o - \hat{k}_h \right|^2 = S_o, \ S_o \in \{0,1;0,01;0,001;0,0001\}.$$

- IV. Wyznaczenie wartości współczynnika $\hat{\gamma}_1$ współczynnika γ według wzoru $\hat{\gamma}_1 = \sqrt{x_o}$, gdzie x_o jest dodatnim rozwiązaniem nierówności $(S_o^{-1})^2 x^3 4S_o^{-1}x 4\delta_1 < 0$.
- V. Wyznaczenie wartości parametrów S_1 i $\hat{k}_o = \hat{k}_h^0(0)$ w oparciu o wzory:

$$\begin{cases} S_1 = \frac{1}{S_o^{-1} + \hat{\gamma}_1^{-2} \delta_1}, \\ k_o = \left(\frac{a_1}{\delta_1} - \frac{1}{2} \gamma_1^2\right) + S_o \sqrt{S_o^{-1} + \hat{\gamma}_1^{-2} \delta_1}, \text{ gdzie } a_1 = \ln \frac{m_o}{m_1}. \end{cases}$$

- VI. Wyznaczenie wartości $\hat{\gamma}_2$ współczynnika γ według wzoru $\hat{\gamma}_2 = \sqrt{x_1}$, gdzie x_1 jest dodatnim rozwiązaniem nierówności $(S_1^{-1})^2 x^3 4S_1^{-1}x 4\delta < 0$.
- VII. Wyznaczenie wartości parametrów S_2 i \hat{k}_h^1 w oparciu o wzory:

$$\begin{cases} S_2 = \frac{1}{S_1^{-1} + \hat{\gamma}_2^{-2} \quad \delta_2}, \\ \hat{k}_h^{(1)} = \left(\frac{a_2}{\delta_2} - \frac{1}{2}\gamma_2^2\right) + S_2\sqrt{S_1^{-1} + \hat{\gamma}_2^{-2}}\delta_2 \end{cases}, \text{ gdzie } a_2 = \ln\frac{m_1}{m_2}. \end{cases}$$

- VIII. Kontynuacja postępowania kroków VI i VII aż do wskaźnika j = r.
 - IX. Wyznaczenie wartości oczekiwanych masy biodegradowalnej $E \hat{m}_{i(s)}(t_j)$ w punktach t_j dla $j = 1, 2, \dots, r$ w oparciu o wzór:

$$E \hat{m}_{i(s)}(t_{j}) = m_{o} \exp\left[-\sum_{i=1}^{j} k_{h}^{i} \delta_{i}\right].$$

X. Wyznaczenie wartości prognozowanej $E \hat{m}_{i(s)} \left(\hat{T} \right) dla \quad \hat{T} \in (2.5, \infty)$ według wzoru:

$$E\,\hat{m}_{i(s)}(\mathbf{T}) = E\,\hat{m}_{i(s)}(T)\exp\left[\left(T-\hat{\mathbf{T}}\right)\hat{k}_{h}^{r} - \int_{T}^{\hat{\mathbf{T}}}\left(\int_{T}^{t}\tau e^{-\tau a}d\tau\right)dt\right]$$

gdzie, *a* jest dodatnim rozwiązaniem równania $e^{-aT}(1+Ta) = a^2 \sqrt{S_r}$.

Wyznaczenie wartości $k_{a(j)}, k_{m(j)}, u_j, v_j$ w oparciu o wzory:

$$\begin{cases} u \left[e^{t_j x} \left(1 + t_j x \right) - e^{t_{j-1} x} \left(1 + t_{j-1} x \right) \right] = \alpha_j x^2 \\ v \left[- e^{t_j y} \left(1 + t_j y \right) + e^{t_{j-1} y} \left(1 + t_{j-1} y \right) \right] = \beta_j y^2 \text{ gdzie,} \\ x + y - 0,34 = 0 \\ u - v + 0,174 = 0 \end{cases}$$

$$\alpha_j = \Delta_q^j + \Delta_s^j , \ \Delta_q^j = m_{i(Aq)}(t_j) - m_{i(Aq)}(t_{j-1}), \text{ oraz}$$

$$\Delta_s^j = m_{i(s)}(t_j) - m_{i(s)}(t_{j-1})$$

$$\beta_j = m_{i(Me)}(t_j) - m_{i(Me)}(t_{j-1}) \text{ oraz}$$

$$x = k_a^j, \ y = k_m^j, \ u = u_j \text{ i } v = v_j.$$

XI. Wyznaczenie wartości oczekiwanej masy zhydrolizowanej $E \hat{m}_{i(Ac)}(t_j)$ w punktach t_j dla j = 1, 2, ..., r w oparciu o wzór:

$$E \hat{m}_{i(Ac)}(t) = \left[m_o - E \hat{m}_{i(s)}(t) \right] - \sum_{i=1}^{j} P_a^i$$
, gdzie $P_a^i = u_i \int_{t_{i-1}}^{t_i} \tau e^{-\hat{k}_a^i} d\tau$

XII. Wyznaczenie wartości oczekiwanej masy acetogennej $E \hat{m}_{i(Ac)}(t_j)$ i metanogennej $E \hat{m}_{i(Me)}(t_j)$ w oparciu o wzory:

$$\hat{m}_{i(Ac)}(t) = \sum_{i=1}^{j} \left[\mathbf{P}_{a}^{i} - \mathbf{P}_{m}^{i} \right] \text{ oraz } \hat{m}_{i(Me)}(t) = \sum_{i=1}^{j} \mathbf{P}_{m}^{(i)}, \text{ gdzie } \mathbf{P}_{m}^{i} = u_{i} \int_{t_{i-1}}^{t_{i}} \tau e^{-\hat{k}_{m}^{i}} d\tau.$$

XIII. Wyznaczenie wartości prognozowanych $Em_{i(Aq)}(T)$, $Em_{i(Ac)}(T)$ oraz $Em_{i(Me)}$, dla

$$\hat{k}_a(t) = k_a^r$$
, $\hat{k}_m(t) = k_m^r$, $\hat{A}_a(t) = u_r$ oraz $\hat{A}_m(t) = v_r$ dla $t \ge T = t_r$.

Zatem dla T > T mamy:

$$E \,\hat{m}_{i(Aq)}(T) = Em_{i(Aq)}(T) + \left[m_{i(s)}(T) - m_{i(s)}(T)\right] - \left[\sum_{i=1}^{r} P_{a}^{i} + \left(\frac{T}{k_{a}^{r}} + \frac{1}{(k_{a}^{r})^{2}}\right) \cdot e^{-Tk_{a}^{r}}\right]$$
$$E \,\hat{m}_{i(Ac)}(T) = \sum_{i=1}^{r} \left[P_{a}^{i} - P_{m}^{i}\right] = \left[A_{r}^{T} - P_{r}^{T}\right] \text{ oraz } E \,\hat{m}_{i(Me)} = \sum_{i=1}^{r} P_{m}^{i} \,.$$

Sporządzenie wykresów porównawczych mas $\left(m_{i(s)}, E \, \hat{m}_{i(s)}\right), \left(m_{i(Aq)}, E \, \hat{m}_{i(Aq)}\right),$

$$\left(m_{i(Ac)}, E\,\hat{m}_{i(Ac)}\right), \left(m_{i(Me)}, E\,\hat{m}_{i(Me)}\right)$$

Przedstawiony algorytm realizowany jest przez program komputerowy "Mathematica 4.1" zgodnie z formułami przedstawionymi w załączniku nr 17.

6.2. Ustalenie warunków początkowych

Zmiany masy odpadów biodegradowalnych (zmiany zawartości węgla w odpadach) w czasie t trwania badań, gdzie $t \in (t_{j-1}, t_j]$ dla j = 1, 2, ..., r, ustalono w oparciu o pomiary doświadczalne według równania:

$$m_{i(s_{C})}(t_{j}) = m_{o_{C}} - m_{i(C)}(t_{j}) - m_{i(G)}(t_{j}),$$

gdzie: $m_{i(s_C)}(t_j)$ - zawartość biodegradowalnego węgla w masie odpadów stałych w czasie t_j trwania badań, m_{o_C} - początkowa zawartość biodegradowalnego węgla w masie odpadów, $m_{i(C)}(t_j)$ - masa węgla usunięta z odpadów w odciekach w czasie t_j prowadzenia obserwacji, $m_{i(G)}(t_j)$ - masa węgla usunięta z odpadów w wyprodukowanym biogazie do czasu t_j prowadzenia badań.

Początkową zawartość biodegradowalnego węgla organicznego w masie odpadów stabilizowanych w warunkach beztlenowych bez recyrkulacji ustalono w oparciu o badania laboratoryjne, (tabela 18). Początkową zawartość biodegradowalnej masy węgla w ZOK i BPOK stabilizowanych beztlenowo z recyrkulacją wyznaczono według równań:

$$m_{o_{CR}} = m_{o_C} + \left(m_{R_{BZT_5}} - m_{Od_{BZT_5}}\right)$$
(69)

$$m_{Od_{BZT_5}} = \sum_{j=1}^{r} \mathcal{L}_{BZT_5} \left(t_{j-1}, t_j \right] \frac{M_C}{M_{O_2}} \text{ oraz } m_{R_{BZT_5}} = \sum_{j=1}^{r} \mathcal{L}_{R_{BZT_5}} \left(t_{j-1}, t_j \right] \frac{M_C}{M_{O_2}}$$
(70)

gdzie: $m_{o_{CR}}$ - masa węgla biodegradowalnego w odpadach z recyrkulacją odcieków, $m_{R_{BZT_5}}$ - masa węgla wprowadzona do układu w odciekach recyrkulowanych, $m_{Od_{BZT_5}}$ - masa węgla usuniętego z układu w odciekach, $\sum_{j=1}^{r} L_{BZT_5}$ - sumaryczny ładunek BZT₅ usunięty w odciekach, $\sum_{j=1}^{r} L_{R_{BZT_5}}$ - sumaryczny ładunek BZT₅ usunięty w odciekach, M_{C} - masa molowa tlenu, M_{C} - masa molowa węgla.

W oparciu o równania (69) i (70) wyliczono, że masa węgla w złożu ZOK z recyrkulacją wyniosła 116.7 g/kg, a BPOK – 57.7 g/kg.

Masę węgla organicznego usuniętego z odpadów wraz z odciekami, w czasie t trwania badań, gdzie, $t \in (t_{j-1}, t_j]$ dla j = 1, 2, ..., r, ustalono na podstawie wyznaczonych doświadczalnie ładunków OWO wyemitowanych w odciekach w czasie trwania badań (Załączniki 4, 6, 9, 11, 13 i 15).

Masę węgla wyemitowanego z odpadów w biogazie w wyniku ich degradacji, w czasie t trwania badań gdzie, $t \in (t_{j-1}, t_j]$ dla j = 1, 2, ..., r, obliczono na podstawie danych wyznaczonych doświadczalnie (Załącznik 10) według równania:

$$m_{i(G)}(t_j) = V_G(t_j) \cdot \left(U_{CO_2}(t_j) + U_{CH_4}(t_j) \right) \frac{Mc}{V_{M_G}},$$
(71)

gdzie: $m_{i(G)}(t_j)$ - masa węgla wyemitowanego z odpadów w gazie w czasie t_j trwania badań, $V_G(t_j)$ - objętość wyemitowanego gazu do czasu t_j trwania badań, $U_{CO_2}(t_j)$, $U_{CH_4}(t_j)$ - udziały CO₂ i CH₄ w całkowitej objętości gazu, M_C - masa molowa węgla, (g/mol); V_{M_G} - objętość molową gazu.

Maksymalne masy węgla, które mogłaby zostać usunięte w biogazie ze ZOK i z BPOK stabilizowanych w warunkach technicznych i laboratoryjnych obliczane w oparciu o równanie Tabsarana [30], przedstawiono w tabeli 19.

Reaktor	Jednostki	Całkowita masa biodegradowalnego węgla organicznego w odpadach	Całkowita masa węgla usuniętego z odpadów w biogazie				
		Skala laboratoryjna					
S	g/kg	111.0	62.0				
SR	g/kg	116.7	65.4				
Р	g/kg	46.0	25.8				
PR	g/kg	57.7	32.3.1				
		Skala techniczna					
S	g/kg	112.0	62.7				
Р	g/kg	47.0	26.3				

Tabela 19. Teoretyczne masy węgla usuniętego w biogazie

7. Dyskusja wyników

7.1. Objętość odcieków

Objętości odcieków powstające w złożu odpadów, uzależnione są, przede wszystkim, od wilgotności polowej odpadów, ich zagęszczenia [29, 47, 117], od temperatury (parowanie), oraz od składu morfologicznego odpadów i objętości wolnych przestrzeni (porów), która zależy od zagęszczenia i struktury odpadów. Składniki organiczne odpadów pochodzenia biogennego takie, jak: papier, odpady kuchenne, roślinne i zwierzęce, w znacznie większym stopniu absorbują wodę niż składniki mineralne (metale, szkło) i organiczne niebiogenne (tworzywa sztuczne). W złożu odpadów o dużej porowatości i słabym zagęszczeniu występują puste przestrzenie powietrzne (pory), przez które woda płynie w dół zwilżając niższe warstwy, osiągając dno składowiska na długo przed nawodnieniem całej objętości odpadów do poziomu polowej pojemności wodnej.

7.1.1. Skala laboratoryjna

W badaniach przeprowadzonych w skali laboratoryjnej całkowite objętości odcieków z reaktorów S, SR, P i PR, w okresie trwania doświadczenia, stanowiły, odpowiednio: 95.7, 117.8, 86.5 i 106.1% objętości dodawanej wody (tabela 20).

Tabela 20. Całkowite objętości odcieków, dawkowanej wody oraz odciekówrecyrkulowanych w czasie trwania badań

Parametry	Reaktory					
	S	SR	Р	PR		
Objętość wody dodana do odpadów dla uzyskania stanu ich nasycenia, dm ³		7				
Objętość dodawanej wody symulującej opady atmosferyczne (bez recyrkulatu), dm ³		23	.1			
Całkowita objętość dodanej wody (bez recyrkulatu), dm ³		30.	14			
Całkowita objętość recyrkulowanych odcieków, dm ³	-	33	-	33		
Całkowita objętość odcieków, dm ³	28.9	65.82	26.1	64.21		
Całkowita objętość powstających odcieków (netto), dm ³	28.9	35.5	26.1	32.0		
Iloraz całkowitej objętości odcieków do całkowitej objętości wody (bez recyrkulatu), %	95.7	117.8	86.5	106.1		

Objętości odcieków z reaktorów S i SR były o około 11% wyższe niż z reaktorów P i PR. Było to wynikiem bardziej intensywnego przebiegu procesów biochemicznego rozkładu w odpadach surowych, w których udział składników łatwo ulegających biodegradacji był znacznie większy niż w BPOK. W odpadach przetworzonych biologicznie składniki ulegające biodegradacji zostały w znacznej części rozłożone w procesie kompostowania. Zawartość węgla biodegradowalnego w ZOK wyniosła 111 g/kg, podczas gdy w odpadach BPOK 46 g/kg (tabela 18).

Objętości odcieków z reaktorów SR i PR były o około 23% wyższe niż z reaktorów S i P. Jest to zgodne z doniesieniami literaturowymi, które wskazują, że recyrkulacja odcieków w znacznym stopniu przyspiesza procesy biodegradacji odpadów w stosunku do odpadów stabilizowanych bez recyrkulacji [68, 87, 107, 108], czego efektem jest wzrost produkcji odcieków.

Najwyższe objętości odcieków w stosunku do ilości wprowadzonej wody wodociągowej obserwowano przez pierwsze dwa miesiące prowadzenia badań (tabela 21). W pierwszym miesiącu badań średnie ilości powstających odcieków były wyższe od objętości dodanej wody – około 4-ro krotnie w reaktorze S i SR oraz około 6-cio krotnie w reaktorach P i PR. W drugim miesiacu wartości ilorazów wyniosły już tylko około 3 i 2, kolejno (tabela 21).

Okres badań,	Czas trwania badań przeliczony na skale	Średn	ie miesię odciekó	czne obj w, dm ³ /d	ętości	Wartości ilorazu objętości odcieki/woda				
miesiące	rzeczywistą, dni ¹⁾	S	SR ²⁾	Р	PR ²⁾	S	SR	Р	PR	
1	1 - 73	0.15	0.15	0.20	0.21	4.31	4.26	5.97	6.10	
2	74 – 145	0.13	0.13	0.08	0.08	3.41	3.20	2.01	2.11	
3	146 - 218	0.06	0.07	0.04	0.06	1.11	1.36	0.71	1.19	
4	219 - 291	0.08	0.09	0.05	0.04	0.97	1.08	0.53	0.49	
5	292 - 364	0.09	0.11	0.10	0.11	1.32	1.67	1.44	1.62	
6	365 - 437	0.06	0.09	0.06	0.06	0.90	1.28	0.83	0.93	
7	438 - 509	0.08	0.08	0.05	0.08	1.08	1.08	0.74	1.11	
8	510 - 582	0.06	0.16	0.06	0.14	1.01	2.50	0.89	2.21	
9	583 - 655	0.09	0.11	0.07	0.11	1.15	1.38	0.89	1.45	
10	656 - 728	0.07	0.05	0.07	0.05	1.01	0.71	0.95	0.66	
11	729 - 801	0.06	0.04	0.06	0.08	0.84	0.63	0.88	1.12	
12	802 - 874	0.04	0.07	0.05	0.07	0.69	1.09	0.81	1.10	
13	875 - 946	0.06	0.08	0.06	0.08	0.76	1.00	0.79	1.09	

Tabela 21. Średnie miesięczne objętości odcieków oraz wartości ilorazów objętości odcieków i dodawanej wody dla reaktorów S, SR, P, PR

¹⁾ W pracy dokonano przetransponowanie skali laboratoryjnej na półtechniczną. Przeskalowanie wynika z faktu, że ta sama objętość wody symulującej opady atmosferyczne wprowadzona do reaktorów w ciągu trwania badań na jednostkę powierzchni złoża (51 tygodni) była równa opadowi deszczu na jednostkę powierzchni złoża, który zmierzono podczas prowadzenia 2.5-lat badań w skali półtechnicznej. W wyniku przeskalowania jeden tydzień procesu w skali laboratoryjnej odpowiadał 18.20 dniom rzeczywistym.

²⁾ Średnia miesięczna objętość odcieków bez recyrkulacji (wartość netto).

W pozostałym okresie badań objętości zbieranych odcieków i objętości dawkowanej wody były zbliżone poza V miesiącem (od 292 do 364 obliczeniowego dnia składowania), w którym objętości odcieków z reaktorów S, SR, P i PR były wyższe od objętości dodanej wody odpowiednio o 1.32, 1.67, 1.44 i 1.62 razy oraz VIII miesiącem (od 510 do 582 obliczeniowego dnia składowania), w którym objętości odcieków z reaktora SR i PR były ponad dwukrotnie wyższe od objętości dodanej wody. Natomiast w IV miesiącu (od 219 do 291 obliczeniowego dnia składowania) objętości odcieków z reaktorów P i PR w stosunku do ilości dodanej wody były zaskakująco niskie i wyniosły tylko 0.53 i 0.49.

Wysokie wartości ilorazów w pierwszych dwóch miesiącach składowania odpadów były wywołane usuwaniem w postaci odcieków, poza dodawaną wodą, również wody powstającej w procesie rozkładu biologicznego oraz jej nadmiaru wynikającego z ubytku masy stałych substancji organicznych [41]. Natomiast, wyraźnie niższa produkcja odcieków, w II miesiącu prowadzenia badań, w reaktorach P i PR w porównaniu z reaktorami S i SR była związana z niższą zawartością substancji organicznych w BPOK niż w ZOK, które odpowiadają za magazynowanie wody oraz wyższym poziomem nasycenia wodą tych odpadów. Podobnie wysoką produkcję odcieków, z reaktorów z recyrkulacją potwierdzili w swoich badaniach Chen [11].

7.1.2. Skala techniczna

W badaniach terenowych (skala techniczna), w całym okresie obserwacji (od czerwca 2003 do listopada 2005 r.), objętości odcieków powstające w zasobniach S i P uzależnione były od pory roku oraz od intensywności opadów atmosferycznych, zgodnie z obserwacjami Chen'a [11], Yuen'a [117] i Tatsi i Zouboulis'a [103]. Najwyższe objętości odcieków z zasobni odpadów S i P w kolejnych latach badań zaobserwowano w miesiącach: lipiec 2003 r. - 7.32 i 2.62 m³, listopad 2004 r. – 11.9 i 8.77 m³ oraz lipiec 2005 r. – 16.6 i 6.8 m³, odpowiednio, (tabela 22). Wysokie objętości odcieków z tych zasobni odnotowano również w:

- \circ 2004 roku; czerwiec 8.22 i 7.80 m³ oraz luty 7.74 m³ (tylko zasobnia S),
- 2005 roku; marzec 12.4 i 12.3 m³, czerwiec 11.2 i 8.3 m³ oraz sierpień 11.9 m³ (tylko zasobnia S).

W całym okresie badań stosunki objętości powstających odcieków do ilości opadów atmosferycznych były bardzo wysokie (tabela 22). Największe wartości odnotowano w ostatnim roku badań (2005 roku), co było zgodne z obserwacjami Ehring'a [17], który stwierdził, że objętości odcieków rosną silnie wraz z wiekiem składowiska i pozostają na wysokim poziomie.

Tabela 22. Całkowite objętości opadów atmosferycznych i odcieków powstających w zasobniach S i P; zakresy wartości oraz średnie dobowe objętości odcieków i średnie miesięczne wartości stosunków objętości odcieków do objętości opadów atmosferycznych

	Objętość	Obi	otość	Do	bowa ob	5w, m ³ /d	Iloraz		
Miesiąc	opadów, m ³	odciek	ów, m ³	Wa śre	rtość dnia	Zakres wa	artości, m ³	odciel opac	ków / dów
Pok	2003	Rea	ktor	Rea	lktor	Rea	ktor	Rea	ktor
KOK	2003	S	Р	S	Р	S	Р	S	Р
VI	4.83	4.49	2.42	0.15	0.08	0-1.58	0 - 2.06	0.93	0.50
VII	8.40	7.32	2.62	0.24	0.08	0.01 - 1.27	0-0.50	0.87	0.31
VIII	1.26	3.07	0.83	0.10	0.03	0.01 - 0.70	0-0.13	2.44	0.66
IX	6.30	4.15	0.93	0.14	0.03	0-2.57	0-0.29	0.66	0.14
Х	7.01	2.96	1.26	0.10	0.04	0-1.02	0 - 0.47	0.42	0.18
XI	4.17	1.14	0.29	0.04	0.01	0-0.15	0-0.05	0.27	0.07
XII	7.54	3.93	2.52	0.13	0.08	0-1.46	0-1.00	0.52	0.33
Rok	2004								
Ι	11.24	6.97	2.39	0.22	0.08	0-0.95	0-0.33	0.62	0.21
II	8.72	9.79	3.77	0.34	0.13	0.06 - 1.70	0.01 - 0.51	1.12	0.43
III	4.26	3.08	1.31	0.10	0.04	0.01 - 0.20	0-0.14	0.72	0.31
IV	3.72	2.58	2.05	0.09	0.07	0.01 - 0.20	0.01 - 0.22	0.69	0.55
V	10.96	6.05	5.52	0.20	0.18	0.05 - 1.03	0.06 - 1.02	0.55	0.50
VI	13.13	8.22	7.80	0.17	0.13	0.09 - 0.70	0.01 - 0.76	0.62	0.59
VII	16.38	4.73	5.86	0.15	0.19	0.01 - 1.03	0.01 - 1.26	0.28	0.36
VIII	14.61	3.19	2.51	0.10	0.08	0 - 0.70	0.01 - 0.46	0.22	0.17
IX	5.67	2.22	1.85	0.07	0.06	0-0.29	0-0.25	0.40	0.33
Х	8.55	4.37	2.67	0.14	0.12	0.02 - 1.05	0.04 - 0.23	0.51	0.31
XI	14.62	11.9	8.77	0.40	0.29	0.09 - 2.95	0.05 - 1.88	0.81	0.59
XII	8.02	8.00	5.96	0.26	0.19	0-1.32	0.04 - 1.14	0.99	0.74
Rok	2005								
Ι	9.83	10.2	7.99	0.33	0.26	0.11 - 1.16	0.06 - 0.99	1.04	0.81
II	9.99	9.00	7.78	0.32	0.18	0.15 - 0.89	0.01 - 0.79	0.90	0.78
III	3.69	12.4	12.3	0.40	0.39	0.17 - 1.31	0.16 - 1.29	3.36	3.33
IV	4.05	3.99	4.47	0.13	0.15	0.07 - 0.20	0.07 - 0.76	0.99	1.10
V	11.76	8.62	7.04	0.28	0.23	0.03 - 0.70	0.01 - 0.58	0.73	0.59
VI	10.44	11.2	8.31	0.37	0.28	0.12 - 3.68	0.05 - 2.30	1.07	0.79
VII	21.25	16.6	6.81	0.54	0.22	0.11 - 3.34	0.04 - 1.35	0.78	0.32
VIII	9.57	11.9	4.06	0.38	0.03	0.09 - 2.95	0.02 - 0.92	1.24	0.42
IX	7.07	4.06	1.45	0.13	0.05	0.07 - 0.42	0.02 - 0.20	0.57	0.21
Х	8.70	2.50	0.94	0.08	0.03	0.04 - 0.17	0.01 - 0.20	0.28	0.11
XI	3.29	2.37	0.69	0.08	0.02	0.04 - 0.37	0.01 - 0.12	0.72	0.21

W marcu 2005 roku, wartości ilorazu objętości odcieków do objętości deszczu wyniosły 3.36 i 3.33 dla zasobni odpadów S i P, odpowiednio. Tak duża objętość odcieków w stosunku do

ilości opadów, była spowodowana topnieniem grubej warstwy śniegu zlegającej na odpadach po okresie zimowym.

W pozostałym okresie 2005 roku wartości tego wskaźnika były również wysokie, ale już niższe; kształtowały się w zakresie od 0.57 do 1.4 w zasobni S (poza październikiem – 0.28) oraz od 0.32 do 1.10 w zasobni P, poza miesiącami: wrzesień, październik i listopad, w których wartości ilorazu zmieniały się od 0.11 do 0.21.

Przez pierwsze półtora roku prowadzenia badań, w okresie od czerwca 2003 roku do grudnia 2004 roku stosunki ilorazu S/P były nieco niższe od uzyskanych w 2005 roku, ale równie często przekraczały wartość 0.60. Dla składowisk ZOK wskaźnik ten przyjmuje z reguły górne wartości w zakresie od 0.5 do 0.6 [9, 37, 98], ale może również przyjmować wartości bliskie 1.0 [47]. Zaobserwowaną, znaczną rozbieżność wartości wyznaczonych w badaniach i podawanych w literaturze, można tłumaczyć brakiem warstwy gruntu mineralnego przekrywającej odpady, która istotnie wpływa na bilans wodny składowiska [9, 117], niskim stopniem zagęszczenia odpadów (0.69 Mg/m³ – zasobnia S i 0.56 Mg/m³ – zasobnia P) i w konsekwencji dużą porowatością złoża badanych odpadów.

Pewien wpływ na objętość powstających odcieków miała też zmiana składu morfologicznego odpadów w ostatnich latach. W odpadach wzrosła zawartość tworzyw sztucznych i szkła. Ponadto, obecnie odpady wrzucane są przez mieszkańców do pojemników w workach foliowych, które w znacznej części pozostały nierozerwane zarówno podczas transportu, jak i przy zagęszczaniu odpadów spychaczem w zasobni. Taka struktura odpadów sprzyjała przedostawaniu się wody w dół składowiska znacznie szybciej niż została osiągnięta polowa pojemność wodna. Łączne ilości zebranych odcieków z zasobni ZOK i zasobni wypełnionej BPOK były bardzo wysokie i stanowiły odpowiednio 77.8 i 50.4% objętości opadów atmosferycznych. Uzyskana wyższa wartość wskaźnika dla zasobni ZOK niż z BPOK jest zrozumiała. BPOK były bardziej jednorodne. W warstwie powierzchniowej tych odpadów występowało mniej otwartych kanałów, którymi woda opadowa mogła przepływać bezpośrednio w głąb złoża nie uczestnicząc w wymianie wody między odpadami a atmosferą (parowanie) oraz nie zawierały nierozerwanych worków. W przypadku ZOK, o dużych średnicach części składników, powierzchnia kontaktu między wodą a masą odpadów była znacznie mniejsza, ponadto, w wyniku rozkładu substancji organicznej powstawała również większa objętość wody.

7.2. Stężenie i objętość wyprodukowanego metanu

7.2.1. Skala laboratoryjna

Objętość i jakość ujmowanego biogazu odzwierciedla skład chemiczny odpadów oraz szybkość ich biodegradacji. W prezentowanych badaniach, podobnie jak w badaniach innych autorów [38, 88, 99] objętość produkowanego biogazu z odpadów nieprzetworzonych biologicznie (reaktor S) była znacząco wyższa niż z odpadów przetworzonych (reaktor P). W reaktorze S całkowita objętość wyprodukowanego metanu wyniosła 230 dm³, co odpowiadało produkcji 38.5 dm³ metanu/kg s.m. natomiast w rektorze P - 202 dm³, co odpowiadało produkcji 30.8 dm³ metanu/kg s.m. (rys. 33, tabela 23).

Efektem mechaniczno-biologicznego przetwarzania odpadów przed składowaniem było zmniejszenie produkcji metanu o około 20% (w odniesieniu do s.m.). Stwierdzono również, że tlenowa stabilizacja odpadów przyspieszyła uruchomienie, w złożu BPOK, fazy fermentacji metanowej w związku z wyeliminowaniem fazy acidogennej podczas ich kompostowania [57, 88, 89]. Metan w biogazie w reaktorze P pojawił się 72 dni wcześniej niż w reaktorze S. Ponadto, w fazie stabilnej fermentacji metanowej zawartość metanu w biogazie wytworzonym w reaktorze P (63.2% metanu) była o 10% wyższa niż w reaktorze S (rys. 32). Charakterystyczne było również szybsze wyczerpywanie się pojemności metanowej złoża BPOK. W ostatnim tygodniu szybkość produkcji biogazu ze ZOK była 2 krotnie wyższa niż z BPOK (tabela 23).

Dorom stry.	Indunativi	Reaktor					
Parametry	Jednostki	S	Р	SR	PR		
Łączna produkcja metanu w czasie 52 tygodni	dm ³	230	202	321	267		
Produkcia jednostkowa metenu	dm ³ /kg	23	20.2	32.1	26.7		
r iodukcja jednostkowa metanu	dm ³ /kg s.m.	38.5	30.8	53.6	40.7		
Maksymalna szybkość produkcji metanu	dm ³ /kg s.m.	0.17	0.19	0.43	0.34		
Szybkość produkcji metanu w 51 tygodniu	$dm^3/(kg s.m.d)$	0.11	0.06	0.04	0.03		

Tabela 23. Efektywność produkcji metanu z odpadów nieprzetworzonych i po biologicznym przetworzeniu stabilizowanych z i bez recyrkulacji odcieków

Nie stwierdzono natomiast wpływu biologicznego przetwarzania odpadów na maksymalną szybkość produkcji metanu (rys. 31). W obu reaktorach była ona porównywalna i wynosiła około 0.18 dm³ metanu/kg s.m. (tabela 23).

Recyrkulacja odcieków wyraźnie intensyfikowała produkcję biogazu zarówno ze ZOK (podobnie jak w badaniach [68, 81, 87, 93, 97, 107]), jak i z BPOK. Objętość wytworzonego metanu w rektorze SR była wyższa o 39% w stosunku do reaktora S, a w reaktorze PR o 32%

w stosunku do reaktora P (rys. 33). Recyrkulacja odcieków nie wpłynęła jednak na czas rozpoczęcia niestabilnej fazy fermentacji metanowej w złożu BPOK, natomiast w złożu ZOK wyraźnie hamowała rozwój metanogenezy. Pierwsze ilości metanu w biogazie z reaktorów P i PR odnotowano w tym samym czasie, w 109 dniu badań, a w reaktorach S i SR odpowiednio w 164 i 255 dniu. Przyczyną hamowania produkcji metanu w reaktorze SR była prawdopodobnie intensywnie przebiegająca w nim faza zakwaszania i wysokie stężenia kwasów organicznych w recyrkulowanych odciekach, co skutkowało obniżeniem zasadowości i pH odcieków [56]. Intensywna recyrkulacja odcieków uniemożliwiała powstawanie nisz o wyższym pH środowiska, w których mogłyby uruchamiać się przemiany metanogenne (w 273 dniu badań pH odcieków w reaktorze SR spadło do wartości 4.7 (rys. 28)). Jednakże po rozpoczęciu w reaktorze SR przemian fermentacji metanowej, szybkość produkcji metanu była w nim znacznie wyższa niż w reaktorze SR była 2.5 - krotnie, a w reaktorze PR o 1.8 - krotnie wyższa niż w reaktorach S i P, odpowiednio (tabela 23).

Recyrkulacja odcieków istotnie skróciła czas intensywnej fermentacji odpadów. W ostatnim tygodniu badań szybkość produkcji metanu w reaktorze PR była blisko 2 krotnie niższa niż w reaktorze P i 4 krotnie niższa niż w reaktorze S, natomiast szybkość produkcji w reaktorze SR była o 2.8 razy niższa niż w reaktorze S i 1.5 razy niż w reaktorze P.

Wyniki badań potwierdziły korzystny wpływ recyrkulacji odcieków na poprawę jakości ujmowanego gazu a w efekcie na ekonomiczne korzyści jego ujmowania i energetycznego wykorzystywania, podobnie jak w pracy Waritha'a [107]. Zawartość metanu w biogazie w okresie jego stabilnej produkcji była najwyższa w reaktorach z recyrkulacją. Średnie zawartości metanu w biogazie, w tym okresie, z reaktorów PR i SR wyniosły 67.4 i 61.8%, odpowiednio, i w porównaniu do reaktorów P i S były o 8 i 6% wyższe.

7.3. Stężenia i ładunki zanieczyszczeń

7.3.1. Skala laboratoryjna

7.3.1.1 Wyznaczenie czasokresów trwania faz rozkładu

Właściwości fizyko-chemiczny odcieków oraz jakość biogazu odzwierciedlają przebieg procesów degradacji odpadów na składowisku. Na ich podstawie można określić czasookresy trwania kolejnych faz rozkładu odpadów. W literaturze prezentowane są różne mechanizmy opisujące przebieg przemian w złożu odpadów od podstawowego (podział trójfazowy) po

bardziej złożone (cztero- i pięciofazowe) (punkt 2.1.). Charakterystykę procesu w zakresie fazowości zachodzących w nim przemian, na podstawie wskaźników jakości odcieków i biogazu, najlepiej oddaje ujęcie czterofazowe zaproponowane przez Sanphoti'ego [3]. Dzieli on proces na:

- o fazę I wstępną,
- o fazę II acidogenezy,
- o fazę III metanogenezę niestabilną,
- o fazę IV metanogenezę stabilną.

Według Sanphoti'ego odcieki z fazy I i II charakteryzują się wysokimi stężeniami zanieczyszczeń, zwłaszcza związków organicznych. Wydzielenie faz I i II ma na celu, przede wszystkim, rozróżnienie warunków, w których zachodzą procesy rozkładu odpadów w złożu. W fazie I przemiany przebiegają (głównie hydroliza) w warunkach tlenowych, natomiast w fazie II w warunkach wyczerpywania tlenu. Odcieki z fazy II charakteryzują się wysokimi stężeniami krótkołańcuchowych kwasów organicznych (LKT) i niskimi wartościami pH (5.5 – 6.5).

Zmiany właściwości fizyko-chemicznych badanych odcieków nie pozwalały na jednoznaczne rozróżnienie czasowe występowania fazy I i II. W związku z powyższym w pracy ostatecznie przyjęto podział procesu przemian na trzy fazy:

- fazę I okres wzrostu stężeń zanieczyszczeń w odciekach i ich utrzymywania się na wysokim poziomie wartości (faza wstępna i fermentacji kwaśnej),
- fazę II okres gwałtownego spadku stężeń zanieczyszczeń w odciekach (faza fermentacji metanowej niestabilnej),
- fazę III okres niskich wartości zanieczyszczeń w odciekach (faza fermentacji metanowej stabilnej).

W tabeli 24 przedstawiono czasy trwania wyróżnionych faz wyznaczone w oparciu o wartości wskaźników zawartości substancji organicznych w odciekach ze ZOK i z BPOK, stabilizowanych w beztlenowych reaktorach laboratoryjnych, z i bez recyrkulacji odcieków. Przedstawione w tabeli 24 czasy trwania tych faz, przyjmowały różne wartości w zależności od przyjętego wskaźnika jako kryterium ich wyznaczania. Wybór jednego wskaźnika, który dobrze oddaje rzeczywisty czas trwania wyróżnionych faz w złożu okazał się praktycznie niemożliwy. Dlatego w tabeli 25 przedstawiono czasy trwania faz I, II i III w reaktorach S, SR, P i PR określone jako wartość średnia czasów trwania faz wyznaczonych w oparciu o: ChZT i OWO; ChZT, OWO i LKT oraz BZT₅.

Parametr – kryterium wyznaczania czasów trwania faz		Fa	za I		Fa	za II		Faza III				
	Czas trwania, dni	Wartość średnia	Zakres wartości	OS ¹⁾	Czas trwania, dni	Wartość średnia	Zakres wartości	OS ¹⁾	Czas trwania, dni	Wartość średnia	Zakres wartości	OS ¹⁾
					Reakto	or S						
ChZT, g/dm ³	310	33.1	23.5-52.6	9.28	418	18.0	4.20-33.0	2.77	200	12.2	0.92 - 32.5	9.77
OWO, g/dm ³	328	12.2	0.92 - 32.5	9.77	546	4.15	0.74-9.56	2.59	54	0.45	0.38 - 0.52	0.07
BZT_5 , g/dm ³	55	11.8	2.47-16.2	6.36	837	3.02	0.65-13.2	2.42	36	0.92	0.30 - 0.35	0.04
LKT, g CH ₃ COOH/dm ³	364	10.8	8.29-15.3	0.08	510	6.89	1.40-15.1	4.99	54	0.22	0.14 - 0.35	0.12
					Reaktor	SR						
ChZT, g/dm ³	237	29.3	21.4 - 41.7	6.75	309	16.1	3.45-27.4	8.36	382	1.44	0.47 - 2.80	0.84
OWO, g/dm ³	237	8.31	7.49-9.34	0.72	345	4.77	0.91-8.86	2.70	346	0.56	0.37 - 0.73	0.12
BZT_5 , g/dm ³	364	7.96	2.47-13.8	2.66	91	3.92	2.00-5.98	1.83	473	0.54	0.08 - 1.95	0.54
LKT, g CH ₃ COOH/dm ³	364	8.32	7.60-10.3	0.70	218	4.19	0.71-8.50	2.48	346	0.22	0.11 - 0.28	0.07
					Reakto	r P						
ChZT, g/dm ³	182	43.5	33.6 - 51.0	4.85	291	22	2.65 - 48.2	14.76	455	1.34	0.38 - 2.51	0.64
OWO, g/dm ³	237	13.3	10.5 - 15.8	1.58	218	7.88	0.95 -1 5.0	4.88	473	0.45	0.32 - 0.61	0.07
BZT ₅ , g/dm^3	73	18.5	3.22 - 24.9	10.2	382	4.77	0.51 - 11.8	2.77	473	0.20	0.10 - 0.28	0.05
LKT, g CH ₃ COOH/dm ³	291	15.4	9.51 - 17.7	2.26	182	7.78	0.73 - 16.7	5.04	455	0.23	0.15 - 0.52	0.08
	I		r		Reaktor	PR	r					
ChZT, g/dm ³	237	33.1	27.8-35.3	2.48	309	11.82	2.38-30.73	10.0	382	1.03	0.37 - 2.10	0.43
OWO, g/dm ³	237	9.86	6.83-11.2	1.57	182	5.77	1.99-9.23	2.71	509	0.90	0.40 - 1 .90	0.48
BZT_5 , g/dm ³	364	10.61	3.14-22.6	6.37	91	4.25	0.81-9.24	3.37	473	0.23	0.08-0.40	0.09
LKT, g CH ₃ COOH/dm ³	237	15.61	6.10-22.9	5.28	218	8.71	0.61-21.70	7.60	473	0.21	0.10-0.51	0.08

Tabela 24. Średnie czasy trwania faz I, II, III dla różnych kryteriów ich wyznaczania oraz zakresy i średnie wartości wskaźników w czasie ich trwania

¹⁾ Odchylenie standardowe

Czasy trwania wyróżnionych trzech faz rozkładu, wyznaczone w oparciu o zmiany wartości ChZT i OWO oraz ChZT, OWO i LKT, mają porównywalne wartości i dobrze odzwierciedlają oczekiwaną szybkość przemian w poszczególnych fazach i reaktorach (czasy trwania fazy I i II w reaktorach z recyrkulacją są krótsze lub zbliżone do czasów ich trwania w reaktorach bez recyrkulacji). Natomiast czasy trwania faz ustalone w oparciu o wartości BZT₅ różnią się znacznie od pozostałych, a wielokrotnie dłuższy czas trwania fazy I w reaktorach z recyrkulacją niż w reaktorach bez recyrkulacji wydaje się mało prawdopodobny.

Parametry przyjmowane jako kryteria wyznaczania czasów trwania faz	Śred	lnie cza	asy trw	ania w	yróżnie S	onych f SR, P i	faz roz PR, dr	kładu c i	odpadó	w w re	aktorad	ch S,	
		Faz	za I			Faz	a II			Faza III			
	S	SR	Р	PR	S	SR	Р	PR	S	SR	Р	PR	
ChZT i OWO	319	237	209	237	482	327	255	246	127	364	464	445	
ChZT, OWO i LKT	334	279	237	237	491	291	230	236	103	358	461	455	
BZT ₅	55	364	73	364	837	91	382	91	36	473	473	473	

Tabela 25. Średnie czasy trwania faz I, II i III wyznaczone w oparciu o różne kryteria

Fazy fermentacji kwaśnej oraz fermentacji metanowej niestabilnej wyznaczone w oparciu o wskaźniki ChZT i OWO oraz ChZT, OWO i LKT najdłużej przebiegały w reaktorze ze ZOK bez recyrkulacji (reaktor S).

Czas trwania faz I i II w reaktorze S był dłuższy od czasu ich trwania w reaktorach SR, PR i P, w zależności od przyjętego kryterium odpowiednio:

faza I

```
o kryterium - wartości ChZT i OWO: 82, 110 i 82 dni,
```

```
o kryterium - wartości ChZT, OWO i LKT: 55, 97 i 97 dni,
```

faza II

```
o kryterium - wartości ChZT i OWO: 155, 227 i 236 dni,
```

o kryterium - wartości ChZT, OWO i LKT: 200, 261, 255 dni.

Czasy trwania faz I i II wyznaczone w oparciu o stężenia BZT₅ w odciekach były całkowicie odmienne. Faza I najdłużej trwała w reaktorach z recyrkulacją SR i PR (364 dni), a najkrócej w reaktorach S i P (55 i 73 dni, odpowiednio). Faza II, przeciwnie, najdłużej trwała w reaktorze S i w porównaniu do reaktorów SR, P i PR była dłuższa o 746, 455 i 746 dni, odpowiednio.

Długości trwania wyróżnionych faz wyznaczonych w oparciu o BZT₅, nie korespondowały z innymi wskaźnikami oceny stopnia biodegradacji odpadów takimi jak: pH, potencjał redoks, produkcja biogazu itd.

Faza III – metanogenezy stabilnej, niezależnie od przyjętego kryterium najkrócej trwała w reaktorze S. W stosunku do reaktorów SR, P i PR była krótsza w zależności od przyjętego kryterium o:

- o zmiany wartości ChZT i OWO w odciekach: 237, 337 i 318 dni,
- o zmiany wartości ChZT, OWO i LKT w odciekach: 255, 358 i 352 dni,
- o zmiany wartości BZT₅ w odciekach: 437, 437 i 437 dni.

Czasy trwania faz wyznaczone w oparciu o wartości parametrów ChZT i OWO oraz ChZT, OWO i LKT, potwierdzają informacje literaturowe, że wstępne przetwarzanie odpadów przed ich składowaniem częściowo lub całkowicie eliminuje występowanie fazy fermentacji kwaśnej w złożu na składowisku, co skutkuje krótszym czasem trwania fazy fermentacji metanowej niestabilnej [38, 57, 88, 89]. Ponadto na ich podstawie można stwierdzić, że niezależnie od przyjętego kryterium recyrkulacja odcieków do złoża ZOK, jako dodatkowe źródło węgla, korzystnie wpływa na proces biodegradacji odpadów na składowisku [81, 85, 93]. Objawia się to szybszym wpracowaniem w złożu fazy metanogennej stabilnej. W reaktorze SR faza fermentacji stabilnej uruchomiła się po 552, a w złożu odpadów bez recyrkulacji po 807 dniach (reaktor S), (przyjmując jako kryterium zmiany parametrów ChZT, OWO i LKT).

O stopniu stabilizacji odpadów świadczą oprócz wskaźników fizyko-chemicznych odcieków również ilość i skład produkowanego biogazu. Moment pojawienia się metanu w produkowanym gazie oznacza faktyczne rozpoczęcie się fazy metanogennej niestabilnej, natomiast ustabilizowanie się jego wartości w biogazie na poziomie około 60% wskazuje na rozpoczęcie fazy metanogennej stabilnej. Czasy trwania poszczególnych okresów wyznaczone na podstawie produkcji i składu biogazu przedstawiono w tabeli 26.

Tabela 26. Średnie czasy trwania okresów I, II i III wyznaczone w oparciu o kryteria produkcji i składu biogazu

Parametry przyjmowane jako	Śred	nie cza	ısy trw	ania w	yróżnie S	onych f SR, P i	faz roz PR, dn	kładu c i	odpadó	w w re	aktorac	ch S,
kryteria wyznaczania	Faza I				Faza II				Faza III			
czasów trwania faz	S	SR	Р	PR	S	SR	Р	PR	S	SR	Р	PR
Biogaz	309	346	237	237	492	218	218	218	127	364	473	473

Czasy trwania wyróżnionych faz rozkładu wyznaczone w oparciu o zawartość metanu w biogazie zbliżone są do uzyskanych w oparciu o kryterium zmiany wartości ChZT, OWO i LKT. Biorąc to pod uwagę, ostatecznie czas trwania wyróżnionych faz przyjęto jako wartości

średnie czasów wyznaczonych w oparciu o zmiany ChZT, OWO i LKT oraz udziału metanu w biogazie (tabela 27).

Parametry przyjmowane jako	Śred	lnie cza	asy trw	ania w	yróżnie S	onych i SR, P i	faz roz PR, dr	kładu c ii	odpadó	w w re	aktorad	ch S,	
kryteria wyznaczania	Faza I					Faza II				Faza III			
czasów trwania faz	S	SR	Р	PR	S	SR	Р	PR	S	SR	Р	PR	
ChZT, OWO, LKT i biogaz	322	312	237	237	492	255	224	227	115	361	467	464	

 Tabela 27. Średnie czasy trwania faz I, II i III

Ostatecznie wyznaczone czasy trwania faz rozkładu odpadów są zgodne (podobnie jak w przypadku kryterium ChZT, OWO i ChZT, OWO i LKT) ze stanem wiedzy na ten temat [38, 57, 68, 81, 85, 87, 88, 89, 93, 97, 107, 127]. Faza kwaśna w reaktorach P i PR trwała znacznie krócej niż w reaktorach ZOK (o 268 i 265 dni niż w reaktorze S oraz o 31 i 28 dni niż w reaktorze SR, odpowiednio), a recyrkulacja odcieków do złoża ZOK przyspieszyła wpracowanie fazy metanogennej niestabilnej i stabilnej w tym złożu.

Efektem znacznego skrócenia fazy kwaśnej w reaktorach BPOK było szybsze wpracowanie fazy fermentacji metanowej niestabilnej, a następnie stabilnej, w tych reaktorach niż w reaktorach ZOK. Faza metanogenna niestabilna w reaktorach P i PR wystąpiła odpowiednio o 85 dni wcześniej niż w reaktorze S i o 75 dni niż w reaktorze SR, natomiast faza metanogenna stabilna o 268 i 265 dni wcześniej niż w reaktorze S oraz o 30 i 27 dni niż w reaktorze SR.

W złożu odpadów ZOK z recyrkulacją fazy metanogenne niestabilna i stabilna rozpoczęły się szybciej o 10 i 238 dni niż w ZOK bez recyrkulacji.

W reaktorach BPOK faza metanogenna niestabilna rozpoczęła się w tym samym czasie, a stabilna szybciej (o 3 dni) w reaktorze bez recyrkulacji odcieków. Kilkudniowe opóźnienie uruchomienia fazy metanogennej stabilnej w reaktorze PR można tłumaczyć zawracaniem LKT w recyrkulowanych odciekach, które mogły powodować zakwaszanie złoża i w konsekwencji utrudniać wpracowanie stabilnej fazy metanogennej stabilnej.

7.3.1.2 Stężenia zanieczyszczeń

W tabeli 28 i 29 przedstawiono zakresy i średnie stężenia zanieczyszczeń w odciekach usuwanych z reaktorów S, SR, P i PR w wyróżnionych fazach rozkładu odpadów.

			Faza I			Faza II		Faza III				
Parametr	Czas, dni	Wart. śred.	Zakres wartości	OS ¹⁾	Czas, dni	Wart. śred.	Zakres wartości	OS ¹⁾	Czas, dni	Wart. śred.	Zakres wartości	OS ¹⁾
			•		Raktor	S						
ChZT, g/dm ³		33.2	23.5 - 52.6	9.01		15.1	2.70 - 32.5	9.07		1.69	0.92 - 2.69	0.75
OWO, g/dm^3		11.2	9.68 - 14.3	1.26		4.65	1.23 - 9.56	2.42		0.70	0.38 - 1.06	0.26
BZT ₅ , g/dm^3		6.16	1.92 - 16.2	4.58		2.16	1.13 – 4.99	0.90		0.95	0.30 - 1.83	0.59
LKT, gCH ₃ COOH/dm ³		10.4	8.29 - 13.8	1.32		8.30	2.12 - 15.3	5.08		1.03	0.14 - 2.28	0.93
Azot ogólny, g/dm ³		0.61	0.46 - 0.78	0.09		0.30	0.14 - 0.56	0.13		0.10	0.08 - 0.12	0.01
Azot amonowy, g/dm ³	322	0.34	0.21 - 0.46	0.07	473	0.18	0.10 - 0.37	0.08	97	0.04	0.04 - 0.08	0.02
Chlorki, g/dm ³		1.97	0.45 - 6.33	1.73		0.99	0.06 - 2.98	1.05		0.05	0.04 - 0.06	0.01
Siarczany, g/dm ³		4.46	3.30 - 6.39	0.91		1.80	0.24 - 4.14	1.39		0.16	0.05 - 0.26	0.08
Zasadowość, gCaCO ₃ /dm ³		3.18	2.10 - 4.70	0.86		1.96	0.54 - 3.55	0.80		0.41	0.35 - 0.48	0.05
pН		5.01	4.70 - 5.40	0.21		5.11	4.60 - 6.50	0.41		6.40	6.20 - 6.80	0.20
Potencjał redoks, mV		-172	-304 -(-137)	37.4		-164	-184 -(-115)	17.89		-74	-94 - (-69)	8.99
					Reaktor	SR						
ChZT, g/dm^3		28.6	21.4 - 41.7	5.99		12.2	2.80 - 25.5	7.13		1.37	0.47 - 2.80	0.80
OWO, g/dm^3		8.35	7.49 - 9.34	0.65		3.99	1.32 - 7.69	2.01		0.58	0.37 - 0.91	0.14
BZT ₅ , g/dm^3		8.23	2.47 - 13.83	2.81		3.40	0.99 - 6.66	2.27		0.27	0.08 - 0.82	0.18
LKT, gCH ₃ COOH/dm ³		8.23	7.60 - 10.29	0.71		5.44	1.10 - 9.17	2.77		0.25	0.11 - 0.71	0.12
Azot ogólny, g/dm ³		0.39	0.27 - 0.56	0.08		0.18	0.07 - 0.49	0.13		0.10	0.08 - 0.13	0.01
Azot amonowy, g/dm ³	312	0.21	0.11 - 0.48	0.10	237	0.05	0.01 - 0.13	0.05	343	0.06	0.04 - 0.09	0.02
Chlorki, g/dm ³		0.62	0.35 - 1.10	0.27		0.29	0.20 - 0.40	0.06		0.14	0.06 -0.20	0.05
Siarczany, g/dm ³		4.83	2.62 - 7.43	1.74		1.62	0.95 - 2.94	0.67		0.19	0.04 - 0.84	0.24
Zasadowość, gCaCO ₃ /dm ³		3.16	1.73 - 4.75	0.84		2.13	0.91 - 2.75	0.52		1.96	1.38 - 2.41	0.36
рН		5.04	4.80 - 5.30	0.19		5.61	4.70 - 7.00	0.75		7.09	6.60 - 7.40	0.20
Potencjał redoks, mV		-175	-320-(-145)	39.9		-262	-370-(-168)	64.9		-191	-300 - (-61)	97.9

Tabela 28. Zakresy i średnie stężenia zanieczyszczeń w odciekach z reaktorów S i SR w wyróżnionych fazach rozkładu odpadów

¹⁾ Odchylenie standardowe

			Faza I			-	Faza II		Faza III			
Parametr	Czas,	Wart.	Zakres	$OS^{1)}$	Czas,	Wart.	Zakres	$OS^{1)}$	Czas,	Wart.	Zakres	$OS^{1)}$
	dni	śred.	wartości	05	dni	śred.	wartości	05	dni	śred.	wartości	05
					Raktor	Р						
ChZT, g/dm ³		44.6	33.6 - 51.0	4.69		21.5	4.25 - 42.2	12.7		1.39	0.38 - 2.65	0.68
OWO, g/dm ³		13.3	10.5 - 15.8	1.58		7.88	0.95 - 14.9	4.88		0.45	0.32 - 0.61	0.07
BZT_5 , g/dm ³		9.90	1.30 - 24.9	8.34		3.79	0.51 - 6.08	1.61		0.20	0.10 - 0.28	0.05
LKT, gCH ₃ COOH/dm ³		15.0	9.51 - 17.7	2.40		9.87	1.58 - 16.9	5.35		0.25	0.15 - 0.73	0.12
Azot ogólny, g/dm ³		0.65	0.44 - 0.76	0.10		0.34	0.17 – 0,69	0.17		0.12	0.06 - 0.19	0.04
Azot amonowy, g/dm ³	237	0.24	0.09 - 0.42	0.09	206	0.16	0.03 - 0.29	0.09	449	0.02	0.01 - 0.03	0.01
Chlorki, g/dm ³		0.80	0.20 - 1.20	0.29		0.41	0.10 - 0.77	0.22		0.12	0.03 - 0.29	0.09
Siarczany, g/dm ³		4.53	3.32 - 6.36	1.01		2.52	0.72 - 5.68	1.74		0.17	0.01 - 0.58	0.16
Zasadowość, gCaCO ₃ /dm ³		5.67	4.12 - 9.30	1.65		3.75	1.62 - 7.46	1.85		1.63	1.18 - 2.57	0.37
рН		5.48	5.30 - 6	0.23		5.89	5.30 - 7.00	0.55		7.11	6.80 - 7.40	0.22
Potencjał redoks, mV		-169	-352 -(-136)	57.2		-202	-280 -(-157)	48.1		-186	-320 - (-70)	91
					Reaktor	PR						
ChZT, g/dm^3		33.1	27.8 - 35.3	2.48		15.65	3.08 - 30.73	9.69		1.34	0.37 - 2.86	0.76
OWO, g/dm^3		9.86	6.83 - 11.2	1.57		5.12	1.84 - 9.23	2.88		0.82	0.40 - 1.74	0.41
BZT_5 , g/dm ³		10.9	3.14 - 22.6	7.24		7.65	0.81 - 16.94	5.07		0.23	0.08 - 0.40	0.09
LKT, gCH ₃ COOH/dm ³		15.6	6.10 - 22.9	5.28		8.71	0.61 - 21.7	7.60		0.21	0.10 - 0.51	0.08
Azot ogólny, g/dm ³		0.40	0.28 - 0.48	0.05		0.24	0.13 - 0.42	0.10		0.09	0.06 - 0.13	0.02
Azot amonowy, g/dm ³	237	0.16	0.06 - 0.42	0.10	209	0.09	0.01 - 0.17	0.07	446	0.03	0.01 - 0.03	0.01
Chlorki, g/dm ³		0.70	0.38 - 0.95	0.15		0.07	0.025 - 0.78	0.19		0.17	0.07 0 0.33	0.07
Siarczany, g/dm ³		5.42	2.13 - 12.5	4.00		3.16	0.81 - 9.56	2.97		0.16	0.01 -0.64	0.13
Zasadowość, gCaCO ₃ /dm ³		5.58	3.52 - 7.46	1.12		3.70	2.37 - 6.60	1.45]	1.86	0.96 - 2.49	0.46
рН		5.66	5.40 - 6.10	0.23		6.38	5.80 - 7.30	0.57		7.12	6.70 - 7.50	0.21
Potencjał redoks, mV		-256	-341232)	32.5		-300	-361 -(-245)	37.7		-192	-372 -(-81)	110

Tabela 29. Zakresy i średnie stężenia zanieczyszczeń w odciekach z reaktorów P i PR w wyróżnionych fazach rozkładu odpadów

¹⁾ Odchylenie standardowe

Zanieczyszczenia organiczne

Średnie stężeń zanieczyszczeń organicznych w odciekach z BPOK w fazach fermentacji kwaśnej i niestabilnej metanowej były przeważnie wyższe niż w odciekach ze ZOK, natomiast w fazie stabilnej fermentacji metanowej wyraźnie niższe.

Średnie stężenia wskaźników substancji organicznych w odciekach z reaktora S, w pierwszych dwóch fazach były niższe niż w odciekach z reaktora P o:

o faza I - ChZT - 26%, OWO - 16%, BZT₅ - 37% i LKT - 31%,

o faza II - ChZT - 30%, OWO - 41%, BZT₅ - 43% i LKT - 16%,

natomiast, w trzeciej fazie były wyższe o:

o faza III - ChZT - 18%, OWO - 35%, BZT₅ - 78% i LKT - 76%.

Podobnie, średnie stężenia wskaźników substancji organicznych w odciekach z reaktora SR, w pierwszych dwóch fazach rozkładu były niższe niż w odciekach z reaktora PR o:

o faza I - ChZT - 13%, OWO - 15%, BZT₅ - 23% i LKT - 47%,

o faza II - ChZT - 22%, OWO - 22%, BZT₅ - 55% i LKT - 38%,

a w fazie trzeciej były wyższe (oprócz OWO) o:

o faza III - ChZT - 2%, BZT₅ - 15% i LKT - 16%.

Stężenia OWO w odciekach z reaktora PR były niższe o 34%.

Wysokie wartości ChZT, OWO, BZT₅ i LKT w odciekach z odpadów przetworzonych biologicznie, w pierwszych dwóch fazach rozkładu, mogły być wynikiem niepełnej stabilizacji biologicznej odpadów W komorach tlenowych. Zawartość wegla biodegradowalnego w odpadach w procesie kompostowania zmniejszyła się o 58% (tabela 18). Innym czynnikiem mógł być rozkład trudno ulegających biodegradacji komponentów organicznych [38], które powoli uwalniając się do odcieków powodowały wzrost ChZT, OWO i BZT₅, a w wyniku dalszych przemian również stężeń LKT. W fazie fermentacji metanowej stabilnej stężenia LKT w odciekach z reaktora S były wyższe o 76% niż w odciekach z reaktora P. Oznacza to, że produkcja LKT, z dostępnych rozpuszczonych w wodzie związków organicznych przebiegała w ZOK wolniej i trwała dłużej niż w BPOK (okres niskich wartości LKT w odciekach z reaktorze S rozpoczął się o 292 dni później niż w odciekach z reaktora P).

Według Leikam'a i Stegmann'a [57] w dobrze ustabilizowanych tlenowo odpadach, dzięki wyeliminowaniu łatworozkładalnych składników organicznych odcieki już po 250 dniach prowadzenia procesu mogą uzyskiwać wartości ChZT poniżej 1000 mg/dm³. W przeprowadzonych badaniach wartości ChZT na poziomie około 1000 mg/dm³ w odciekach z reaktorów P, PR i SR uzyskano około 600 dnia badań, a w odpadach z reaktora S dopiero,

około 300 dni później, w 900 dniu. Obserwowane w badaniach pojawienie się niskich wartości ChZT w odciekach po dłuższym czasie niż stwierdzili to Leikam i inni [57] wskazuje, że stopień tlenowej stabilizacji odpadów w instalacji MBP w Zielonej Górze jest niski. Przyczyną może być krótki czas napowietrzania odpadów, nieodpowiednia ich wilgotność lub nietypowy skład morfologiczny. Odpady użyte w badaniach poddawano napowietrzaniu przez okres około 5-6 tygodni. Brinkmann i inni [7] stwierdzili, że redukcja emisji zanieczyszczeń organicznych (reprezentowanych przez OWO) i azotu amonowego w odciekach maleje wraz ze wzrostem czasu stabilizacji tlenowej odpadów i dopiero po 25 tygodniach intensywnego napowietrzania wynosi 80-90%, a po 5 tygodniach jest wyraźnie mniej znacząca (rys. 9). Pozwala to stwierdzić, że główną przyczyną niskiego stopnia redukcji zawartości substancji organicznych w odciekach z BPOK uzyskanego w badaniach własnych (znacznie niższego niż w badaniach innych autorów) był krótki czas kompostowania odpadów przed składowaniem, który był również powodem wystąpienia krótkiej fazy kwaśnej w reaktorach P i PR.

Azot ogólny TKN

Stężenia azotu ogólnego w odciekach z reaktora BPOK, we wszystkich rozpatrywanych fazach rozkładu, były wyższe niż z reaktora ze ZOK, kolejno o: 6, 12 i 17%. Recyrkulacja odcieków skróciła okres występowania wysokich stężeń azotu w odciekach niezależnie od stopnia tlenowej stabilizacji odpadów przed składowaniem. Wyższe stężenia azotu ogólnego w odciekach BPOK niż ze ZOK potwierdzili w badaniach Mostbauer i inni [69]. Wykazali oni, że na składowiskach BPOK może nastąpić wzrost azotu ogólnego (często jego form trudnorozkładalnych) spowodowany dalszą mineralizacją stałych trudniej ulegających biodegradacji składników odpadów bogatych w azot, który może utrzymywać się nawet do 1 roku od momentu ich zdeponowania na składowisku odpadów.

Azot amonowy

Zmiany stężeń azotu amonowego przebiegały inaczej niż azotu ogólnego. Wyższe stężenia azotu amonowego zaobserwowano w odciekach ze ZOK niż z BPOK. Średnie stężenia azotu amonowego w odciekach z reaktora S były wyższe niż z reaktora P w wyróżnionych fazach rozkładu o 29, 11 i 50%, odpowiednio. Niższe wartości azotu amonowego w odciekach z BPOK są zrozumiałe; część azotu z odpadów została usunięta w procesie biologicznym prowadzonym przed ich składowaniem [15, 57, 88, 89].

Wpływ recyrkulacji na emisję azotu amonowego z odpadów w odciekach jest bardzo złożony. Emisja azotu amonowego w odciekach ze złoża odpadów z recyrkulacją zależy między innymi od: stopnia rozkładu biologicznego odpadów, intensywności recyrkulacji odcieków, stopnia akumulacji i/lub redukcji azotu na drodze biologicznej oraz od wielkości jego sorpcji w złożu odpadów [78, 90, 92]. W badaniach stężenia azotu amonowego w odciekach z reaktorów z recyrkulacją zmieniały się skokowo. W fazie fermentacji kwaśnej były wyższe w odciekach z reaktora SR niż z reaktora PR (o 27%), w fazie fermentacji metanowej niestabilnej w odciekach z reaktora PR (o 44%), a w fazie fermentacji metanowej stabilnej ponownie w odciekach z reaktora SR (o 50%). Generalnie jednak stężenia azotu amonowego w odciekach z reaktorów z recyrkulacją (reaktory SR i PR) były niższe niż z reaktorów bez recyrkulacji (reaktory S i P) w pierwszych dwóch fazach rozkładu o 33, 72%, odpowiednio, natomiast w fazie III były już wyższe o 33%. Podobny wpływ recyrkulacji odcieków na przebieg akumulacji biologicznej azotu amonowego w złożu odpadów stwierdzili Öztürk i inni [78]. W badaniach Woelders'a i Oonk'a [76] oraz Šan'a i innych [92] stwierdzono, że niskie częstotliwości recyrkulacji sprzyjają większej koncentracji azotu amonowego w odciekach, a wzrost częstotliwości recyrkulacji sprzyja jego spadkowi. Autorzy tłumaczą to wysoką zdolnością do akumulacyji i bioakumulacji w złożu stabilizowanych odpadów z odpowiednio prowadzoną recyrkulacją.

Siarczany

Stężenia siarczanów, podobnie jak w badaniach Robinson'a i innych [88] przyjmowały wyższe wartości w reaktorach z BPOK niż w reaktorach ze ZOK. Stężenia siarczanów w odciekach z reaktora P, w wyróżnionych fazach rozkładu, były wyższe w stosunku do reaktora S o 1.5, 29 i 6%, natomiast, stężenia w odciekach z reaktora PR, w pierwszych dwóch fazach, były wyższe o 11 i 49%, a w fazie trzeciej niższe o 16% w stosunku do reaktora SR. Wyższe stężenia siarczanów w odciekach z BPOK mogą świadczyć o braku w złożu odpadów silnie beztlenowych stref.

Redukcja siarczanów rozpoczyna się w fazie fermentacji metanowej niestabilnej, a jej intensywność uzależniona jest od zdolności redukcyjnej złoża. Raninger i inni [84] w swoich badaniach stwierdzili, że ilość siarczanów usunięta wraz z odciekami ze złoża BPOK z recyrkulacją była znacząco wyższa niż ze złoża bez recyrkulacji odcieków. Podobne zjawisko obserwowano w badaniach. Stężenia siarczanów w odciekach z reaktora PR były wyższe, w dwóch pierwszych fazach, od stwierdzonych w odciekach z reaktora P, o 16 i 20%, a w III fazie były porównywalne. Natomiast, stężenia siarczanów w odciekach z reaktora SR były wyższe niż z reaktora S, w I i III fazie rozkładu o 8 i 16%, a w II fazie były niższe o 10%.

Chlorki

Średnie stężenia chlorków w wyróżnionych fazach rozkładu odpadów zmieniały się inaczej niż stężenia siarczanów; przyjmowały niższe wartości w odciekach z BPOK niż ze ZOK,

podobnie jak u Danhamer'a i Jager'a [15] oraz Robinson'a i innych [88]. Natomiast średnie stężenia chlorków w odciekach usuwanych z reaktorów z recyrkulacją były niższe niż z reaktorów bez recyrkulacji.

рН

Zmiany pH odcieków odzwierciedlały kolejne fazy rozkładu odpadów, a jego wartości wpływały na aktywność, charakterystycznych dla tych faz, populacji mikroorganizmów. Niskie pH odcieków korespondowało z wysokimi wartościami BZT₅ i LKT, a jego wzrost z ich spadkiem. Niezależnie od wartości BZT5 i LKT na ostateczną wartość pH ma wpływ układ buforowy złoża, który zależny jest od stężenia w odciekach słabych kwasów i zasad, ich zasadowości oraz zawartości w gazie CO₂ [91]. Niskie wartości pH świadczą o intensywnie przebiegającej fazie kwaśnej, natomiast jego wzrost powyżej 6 o rozpoczęciu fazy metanogennej. W badaniach w I fazie rozkładu (faza kwaśna) wartości pH oscylowały wokół 5, w fazie II (fermentacja metanowa niestabilna) wokół 6 a w fazie III (fermentacja metanowa stabilna) wokół 7. Najniższe wartości pH w I i II fazie rozkładu odnotowano w odciekach z reaktora S. Średnie wartości pH były niższe od oznaczonych w odciekach z reaktorów SR, P i PR o: faza I – 0.03, 0.45 i 0.63 odpowiednio; faza II – 0.50, 0.78 i 1.27. W fazie III obojętny odczyn odcieków, świadczący o stabilnych warunkach metanogennych, osiągnięto tylko w reaktorach SR, P i PR. W tym okresie średnie wartości pH odcieków z reaktora S były niższe niż w pozostałych reaktorach o około 0.7. Stwierdzono, że recyrkulacja odcieków przyspiesza osiągniecie obojętnego odczynu odcieków, co znajduje potwierdzenie w literaturze [92, 97, 107].

Potencjał redoks

Rozkład zmian potencjału przedstawia ważną informację o przebiegu procesu stabilizacji beztlenowej odpadów. Rozpoczęciu fazy metanowej niestabilnej towarzyszy gwałtowny spadek potencjału redoks do jego maksymalnych ujemnych wartości, a szybki wzrost potencjału redoks koresponduje z uruchomieniem fazy metanogennej stabilnej [48]. W badaniach, podobnie jak u San'a i innych [92], najniższe wartości potencjału redoks zaobserwowano w odciekach ze ZOK i z BPOK stabilizowanych beztlenowo z recyrkulacją. Ponadto, podobnie jak u Kaczorek i innych [48] we wszystkich reaktorach badawczych okres spadku wartości potencjału redoks korespondował z rozpoczęciem fazy metanogennej niestabilnej, a okres gwałtownego wzrostu - fazy metanogennej stabilnej (rys. 32). Maksymalną produkcję metanu obserwowano przy najniższych wartościach potencjału redoks, a intensywny wzrost wartości potencjału do poziomu powyżej 100 mV z okresem gwałtownego spadku jego produkcji.

7.3.1.3 Ladunki zanieczyszczeń

Rzeczywiste zagrożenie środowiska przez składowiska obrazują ładunki zanieczyszczeń wyemitowane z odpadów w odciekach i gazie składowiskowym. Ich wielkość zależy przede wszystkim od szybkości procesów przebiegających w złożu odpadów, i tylko w małym stopniu od ilości powstających odcieków. W badaniach stwierdzono wyższe szybkości wymywania zanieczyszczeń z BPOK niż ze ZOK (tabela 30). Korzystny wpływ wstępnej tlenowej stabilizacji odpadów przed składowaniem na "upłynnienie" (hydrolizę), w warunkach beztlenowych, pozostałych składników organicznych obecnych w odpadach jest zjawiskiem znanym i opisanym w literaturze [10]. Wysoki stopień rozpuszczenia substancji organicznych występujących w BPOK oraz duża podatność na metanizację produktów ich hydrolizy wpłynęły korzystnie na rozwój populacji mikroorganizmów metanogennych czego efektem było szybsze wpracowanie stabilnej fazy metanogennej w złożu tych odpadów (tabela 27).

	Fazy		Sz	zybkość	wymyw	ania zanie	czyszczeń, m	g/(kg d)	
Reaktor	rozkładu	ChZT	OWO	BZT ₅	LKT	Azot ogólny	Azot amonowy	Chlorki	Siarczany
	Ι	146	43.6	31.6	41.0	2.56	1.39	7.56	17.1
S	II	43.1	13.2	6.39	23.5	0.86	0.51	2.78	5.12
5	III	4.24	2.32	2.32	2.38	0.26	0.12	0.125	0.40
	I+II+III	75.9	22.9	15.0	27.5	1.41	0.78	4.22	8.93
	Ι	129	37.3	36.1	37.0	1.77	2.04	3.00	18.8
CD	II	43.6	14.7	13.4	20.26	0.70	0.23	1.13	6.38
SK	III	3.79	1.66	0.89	0.78	0.29	0.17	0.42	0.76
	I+II+III	58.1	17.6	16.5	18.6	0.92	0.84	1.51	8.57
	Ι	166	48.5	42.0	52.8	3.50	0.97	6.20	11.5
D	II	63.0	23.2	12.1	29.3	0.99	0.46	1.17	7.18
Г	III	3.37	1.12	0.46	0.59	0.30	0.05	0.27	0.38
	I+II+III	60.3	18.8	14.2	21.1	1.31	0.39	2.05	4.9
	Ι	147	43.2	33.4	57.3	2.56	0.83	5.16	26.04
PR -	II	47.9	15.3	25.6	25.8	0.72	0.26	1.33	8.77
	III	5.39	3.31	0.87	0.78	0.33	0.09	0.66	0.63
	I+II+III	53.0	16.7	15.3	21.7	1.01	0.34	2.01	9.29

Tabela 30. Szybkość wymywania zanieczyszczeń z odpadów w reaktorach S, SR, P i PR w wyróżnionych fazach przemian oraz w całym okresie badań

Wpływ mechaniczno-biologicznego przetwarzania odpadów na szybkość wyczerpywania potencjału potencjałów substancji podatnych na wymywanie obecnych w złożu odpadów obrazują krzywe sumowe emisji zanieczyszczeń z BPOK i ze ZOK przedstawione na rysunkach 47 i 48.

Rys. 47. Krzywe sumowe ładunków zanieczyszczeń usuniętych w odciekach z reaktorów S i P

Rys. 48. Krzywe sumowe ładunków zanieczyszczeń usuniętych w odciekach z reaktorów SR i PR

Na podstawie zaobserwowanych zmian można stwierdzić, że spadek szybkości wymywania zanieczyszczeń ze złoża BPOK ("wypłaszczenie krzywych sumowych") rozpoczął się znacznie wcześniej niż ze ZOK, zarówno w reaktorach z recyrkulacją jak i bez recyrkulacji. W tabeli 31 przedstawiono sumowe ładunki zanieczyszczeń usunięte z reaktorów S, SR, P i PR w wyróżnionych fazach rozkładu i w całym okresie badań oraz ich ilorazy dla reaktorów

S/P i SR/PR.

Tabela 31. Ładunki zanieczyszczeń usunięte w odciekach z reaktorów S, SR, P i PR w wyróżnionych fazach przemian i całym okresie badań oraz ich ilorazy dla reaktorów S/P i SR /PR

Reaktor	Fazy rozkładu	Sumowe ładunki zanieczyszczeń, g/kg									
		ChZT	OWO	BZT ₅	LKT	Azot ogólny	Azot amonowy	Chlorki	Siarczany		
S	Ι	46.9	14.1	10.2	13.2	0.83	0.45	2.43	5.50		
	II	20.4	6.23	3.02	11.1	0.40	0.24	1.31	2.42		
	III	0.41	0.17	0.22	0.23	0.02	0.01	0.02	0.04		
	I+II+III	67.7	20.5	13.4	24.5	1.25	0.70	3.76	7.96		
SR	Ι	40.2	11.6	11.6	11.5	0.55	0.63	0.94	5.87		
	II	10.3	3.48	3.17	4.80	0.17	0.05	0.27	1.51		
	III	1.30	0.57	0.31	0.27	0.10	0.06	0.14	0.26		
	I+II+III	51.8	15.7	15.1	16.6	0.82	1.49	1.35	7.64		
Р	Ι	39.2	11.5	9.96	12.5	0.83	0.23	1.47	2.73		
	II	13.0	4.78	2.49	6.03	0.20	0.09	0.24	1.48		
	III	1.51	0.50	0.21	0.27	0.13	0.02	0.12	0.17		
	I+II+III	53.7	16.8	12.6	18.8	1.16	0.34	1.83	4.38		
PR	Ι	34.9	10.2	7.91	13.6	0.61	0.20	1.22	6.17		
	II	10.0	3.20	5.36	5.40	0.15	0.06	0.28	1.83		
	III	2.4	1.48	0.39	0.35	0.15	0.04	0.29	0.28		
	I+II+III	47.3	14.9	13.7	19.4	0.91	0.30	1.79	8.28		
Ilorazy											
S/P	Ι	1.19	1.22	1.02	1.06	0.99	1.94	1.66	2.02		
	II	1.57	1.30	1.21	1.84	1.99	2.53	5.47	1.64		
	III	0.27	0.34	1.08	0.87	0.19	0.46	0.10	0.23		
	I+II+III	1.26	1.22	1.06	1.31	1.07	2.00	2.06	1.82		
SR/PR	Ι	1.15	1.14	1.42	0.85	0.91	3.20	0.77	0.95		
	II	1.03	1.09	0.59	0.89	1.10	0.98	0.96	0.82		
	III	1.54	0.38	0.78	0.77	0.69	1.42	0.49	0.93		
	I+II+III	1.10	1.05	1.08	0.86	0.91	0.91	0.75	0.92		

Jednostkowe ładunki zanieczyszczeń wymyte z BPOK w reaktorach z recyrkulacją i bez, w pierwszych dwóch fazach były niższe niż z ZOK (poza azotem ogólnym w pierwszej fazie), a w fazie trzeciej przeważnie wyższe (oprócz ChZT i azotu amonowego usuniętych z reaktora PR i BZT₅ z reaktora P). Usunięcie części łatworozkładalnych substancji organicznych w

instalacji MBP spowodowało, że sumowy ładunek zanieczyszczeń wymyty w całym okresie badań z BPOK był niższy niż ze ZOK, odpowiednio o (tabela 31):

- o ChZT, OWO, BZT₅ i LKT 21, 18, 6, 23%,
- o azot ogólny i amonowy − 7, 50%,
- o chlorki i siarczany 51, 45%.

Sumowe ładunki zanieczyszczeń usunięte w odciekach z reaktorów ZOK i BPOK z recyrkulacją miały zbliżone wartości. Było to wynikiem przekształceniem znacznej części rozpuszczonych substancji organicznych w biogaz (najwyższe objętości metanu wyprodukowano w reaktorach SR i PR). Potwierdzają to niskie ładunki BZT₅ usunięte w odciekach z tych reaktorów, które zostały wykorzystane do wzrostu mikrobiologicznego i produkcji biogazu.

7.3.2. Skala techniczna

Zmiany składu fizyko-chemicznego odcieków usuwanych ze złoża ZOK i BPOK stabilizowanych w skali technicznej różniły się wyraźnie od zmian zaobserwowanych w badaniach przeprowadzonych w skali laboratoryjnej. Przede wszystkim wartości analizowanych zanieczyszczeń w odciekach powstających w skali technicznej wahały się skokowo w szerokich granicach bez wyraźnych tendencji zmian co utrudniało ustalanie na ich podstawie czasów trwania wyróżnionych faz degradacji.

Zaobserwowane różnice w składzie fizyko–chemicznym odcieków są naturalne, a zjawisko to zostało potwierdzone w literaturze [52, 113]. Skład fizyczno-chemiczny odcieków z odpadów na składowisku zależy od zmiennych warunków atmosferycznych (temperatury, ilości opadów atmosferycznych oraz stopnia zagęszczenia odpadów w profilu złoża), które wpływają na szybkość procesów biochemicznych oraz intensywność wymywania zanieczyszczeń ze złoża odpadów. W skali laboratoryjnej zewnętrzne czynniki determinujące szybkość rozkładu (wilgotność i temperatura) były kontrolowane i zmieniały się w niewielkim zakresie a odpady zostały zagęszczone równomiernie, stąd zmiany składu fizyczno-chemicznego odcieków i poszczególnych faz rozkładu były łatwiejsze do interpretacji. Badania w skali laboratoryjnej winny być wykorzystywane do prognozowania trendów zmian składu i ilości odcieków [52], natomiast wyniki badań w skali technicznej do ustalania parametrów (np.: ładunków jednostkowych zanieczyszczeń), w oparciu o które projektuje się systemy ujmowania i unieszkodliwiania odcieków oraz instalacje do ujmowania i wykorzystywania biogazu [113].

7.3.2.1 Wyznaczanie czasookresów trwania faz rozkładu

Zmiany składu fizyczno-chemicznego odcieków z odpadów nieprzetworzonych i przetworzonych biologicznie ustalone w badaniach przeprowadzonych w warunkach technicznych nie pozwoliły jednoznacznie ustalić czasu trwania poszczególnych faz rozkładu, przeciwnie do warunków laboratoryjnych, dla których w prosty sposób je wyznaczono (punkt 7.2.1.) Brak pomiarów produkcji biogazu był również istotnym czynnikiem, który utrudniał wiarygodne wyznaczenie tych przedziałów.

W sytuacji, gdy nie ma dostępnych informacji o składzie chemicznym biogazu lub/i zmiany składu chemicznego odcieków nie dają miarodajnych informacji o przebiegu fermentacji, fazy procesu można wyznaczyć na podstawie znanych w literaturze prawdopodobnych czasów ich trwania [64].

Typowy przebieg fazy hydrolizy tlenowej i acidogenezy charakteryzuje się wysokimi stężeniami zanieczyszczeń organicznych, wzrostem LKT i spadkiem wartości pH. O rozpoczęciu fazy metanogennej świadczy spadek LKT, ChZT i potencjału redoks oraz wzrost pH. W przeprowadzonych badaniach wysokie stężenia zanieczyszczeń w odciekach odnotowano tylko w okresie pierwszych dwóch tygodni prowadzenia badań (podobnie jak u McBean'a w fazie hydrolizy tlenowej [64]). W pozostałym okresie zawartości zanieczyszczeń organicznych oraz potencjału redoks zmieniały się skokowo, a wartości pH w całym okresie badań (2.5 lat) praktycznie malały liniowo. Na podstawie takiej charakterystyki zmian składu odcieków wiarygodne wyznaczanie czasów trwania faz rozkładu było niemożliwe. W związku z powyższym, w pracy zastosowano podział zaproponowany przez McBean'a, który przedstawia tendencję zmian faz w ujęciu czasowym ustaloną na podstawie badań obejmujących długoletni monitoring składowisk [64]. Dodatkowo w pracy wyróżniono fazę fermentacji metanowej stabilnej, nie wydzielaną przez McBean'a. Charakteryzuje się ona stałymi stężeniami substancji organicznych w odciekach, wzrostem potencjału redoks, spadkiem produkcji biogazu i utrzymywaniem się zawartości metanu w biogazie na względnie stałym, wysokim poziomie - około 60-70%. W pracy fazę tę wyznaczono na podstawie zmian krzywych sumowych ładunku ChZT i OWO, których kształt wskazuje na charakter przebiegającego procesu. Moment "wypłaszczenia krzywej" zwykle odpowiada okresowi emisji w odciekach stałych, niskich ilości zanieczyszczeń organicznych, co jest symptomatyczne dla fazy metanogennej stabilnej. Okresy te można wyraźnie zauważyć analizując krzywe sumowe emisji ładunków zanieczyszczeń w odciekach wyznaczone w skali laboratoryjnej (rys. 47 i 48). Lina oznaczająca rozpoczęcie fazy metanogennej stabilnej

pokrywała się z momentem "wypłaszczenia krzywej" sumowej. W złożu ZOK w badaniach w skali technicznej faza metanogenna stabilna rozpoczęła się w 713 dniu badań.

Ostatecznie wyróżniono cztery faz rozkładu odpadów przyjmując następujące czasy ich trwania:

- o faza I^0 wstępna 2 tygodnie (od 1 do14 dnia),
- o faza I fermentacja kwaśna kolejne dwa miesiące (od 16 do 73 dnia),
- o faza II fermentacja metanowa niestabilna (od 80 do 685 dnia),
- o faza III fermentacja metanowa stabilna (od 713 dnia do końca trwania badań).

W związku z tym, że w literaturze nie ma informacji na temat czasów trwania wyróżnionych faz w złożu odpadów przetworzonych biologicznie w pracy zastosowano ten sam podział, który przyjęto dla ZOK. Pozwoli to na porównanie wielkości stężeń zanieczyszczeń w odciekach ze ZOK i z BPOK i ustosunkowanie się do stanu wiedzy prezentowanej na ten temat w literaturze.

7.3.2.2 Stężenia zanieczyszczeń

W odciekach z BPOK, podobnie jak u Leikam'a i Stegmann'a [57] oraz Robinson'a i innych [88], nie stwierdzono występowania w odciekach wysokich stężeń substancji organicznych i związków azotu charakterystycznych dla fazy wstępnej i fazy fermentacji kwaśnej, które wystąpiły w odciekach ze ZOK (tabela 32). Stężenia zanieczyszczeń w odcieków z BPOK w fazie fermentacji metanowej niestabilnej i stabilnej były zbliżone lub nawet wyższe od stwierdzonych w odciekach ze ZOK. Brak fazy fermentacji kwaśnej związany był z niską zawartością łatwo ulegających rozkładowi substancji organicznych w BPOK, które zostały wyeliminowane podczas kompostowania odpadów.

Zanieczyszczenia organiczne

Wartości ChZT, OWO, BZT5 i LKT w odciekach ze ZOK, w fazie wstępnej (fazie I^0) i fazie fermentacji kwaśnej (faza I) były wyższe niż w odciekach z BPOK, odpowiednio o:

- o Faza I⁰ 82, 83, 93 i 81%,
- o Faza I−45, 41, 82, 62%.

W fazie fermentacji metanowej niestabilnej i stabilnej stężenia zanieczyszczeń w odciekach ze ZOK były podobne. ChZT w odciekach ze ZOK przyjmowały nieznacznie niższe wartości (o 8 i 11%, odpowiednio) niż w odciekach z BPOK, a stężenia LKT zdecydowanie wyższe, o: 40 i 65%, odpowiednio. Wzrost wartości ChZT w odciekach z BPOK związany był z rozkładem trudno ulegających rozkładowi stałych składników odpadów [35, 38].

Zbliżone wartości stężeń w odciekach ze ZOK i z BPOK w fazie fermentacji metanowej są udokumetowane w literaturze [57, 88, 89]. Można to tłumaczyć tym, że szybkości przemian produktów hydrolizy trudno ulegających rozkładowi składników organicznych, które dominują w złożu BPOK w fazie metanowej, są znacznie niższe niż produktów hydrolizy łatwo rozkładalnych komponentów znajdujących się w ZOK. Dlatego, po wyczerpaniu się łatwo ulegających rozkładowi składników organicznych w złożu ZOK, w kolejnych latach rozkładu zarówno szybkości jak i stężenia wymywanych z nich zanieczyszczeń były zbliżone do BPOK, a nawet niższe. Robinson i inni [88] na podstawie badań własnych i badań innych autorów twierdzą, że czas emisji zanieczyszczeń ze składowisk ZOK i BPOK w okresie długoterminowym będzie podobny. Różnica w czasie emisji będzie związana tylko z brakiem fazy acidogennej w złożu BPOK, której wyeliminowanie powoduje szybsze wpacowanie fazy metanogennej. W przeprowadzonych badaniach, w skali laboratoryjnej, fazę metanogenną stabilną zaobserwowano w złożu BPOK o 346 dni szybciej niż w złożu ZOK.

Tendencje zmian stężeń zanieczyszczeń organicznych w odciekach ze ZOK i z BPOK ustalone w skali technicznej różniły się od zaobserwowanych w odciekach z reaktorów Stężenia zanieczyszczeń organicznych odciekach BPOK laboratoryjnych. W Z stabilizowanych w reaktorach laboratoryjnych były wyższe niż ze ZOK w fazie fermentacji kwaśnej i fazie fermentacji metanowej niestabilnej, a w fazie stabilnej porównywalne. W skali technicznej natomiast, w dwóch pierwszych fazach rozkładu, w szególności w fazie wstępnej tlenowej (faza I⁰), stężenia zanieczyszczeń organicznych w odciekach ze ZOK były znacząco wyższe niż w odciekach z BPOK, a w fazie metanogennej niestabilnej były porównywalne.

W skali laboratoryjnej nie odnotowano obecności wstępnej fazy tlenowej, której występowanie jest potwierdzone w literaturze w eksperymentach w skali technicznej [88, 89]. Brak fazy tlenowej w reaktorach laboratoryjnych był prawdopodobnie wynikiem braku monitoringu jakości odcieków w pierwszym okresie rozkładu odpadów (pierwszy tydzień składowania), podczas którego do reaktorów dodawano wodę wodociągowa (1 litr dziennie) w celu uzyskania stanu nasycenia odpadów wodą. Bardzo intensywne nawadnianie odpadów z jednej strony przyspieszało przebieg procesu rozkładu, a z drugiej utrudniało wiązanie tlenu z cząstkami odpadów powodując jego szybsze usuwanie z gazami ze złoża. W efekcie faza tlenowa, jeśli wystąpiła, mogła trwać krócej niż 1 tydzień.

	Faza I ⁰			Faza I			Faza II			Faza III		
Parametr	Wart. śred.	Zakres wartości	OS ¹⁾	Wart. śred.	Zakres wartości	OS ¹⁾	Wart. śred.	Zakres wartości	OS ¹⁾	Wart. śred.	Zakres wartości	OS ¹⁾
Zasobnia ZOK												
ChZT, g/dm ³	4.00	2.20-6.60	2.09	1.75	1.03-3.30	0.56	1.06	0.47-1.82	0.28	1.24	0.69-1.55	0.38
BZT_5 , g/dm ³	2.31	0.98-4.60	1.67	0.91	0.47-2.10	0.41	0.09	0.002-0.68	0.14	0.06	0.02-0.12	0.04
OWO, g/dm ³	1.61	1.40-2.12	0.34	0.66	0.36-1.66	0.33	0.48	0.18-1.20	0.24	0.50	0.35-0.64	0.13
LKT, g CH ₃ COOH /dm ³	0.21	0.08-0.42	0.16	0.16	0.05-0.72	0.16	0.10	0.001-0.32	0.70	0.17	0.03-0.32	0.13
Azot ogólny, g/dm ³	0.68	0.55-0.81	1.88	0.27	0.08-0.55	0.12	0.10	0.03-0.31	0.06	0.17	0.11-0.21	0.05
Azot amonowy, g/dm ³	0.50	0.47-0.53	0.04	0.15	0.05-0.37	0.07	0.04	0.003-0.18	0.04	0.11	0.06-0.15	0.05
Chlorki, g/dm ³	0.76	0.65-0.76	0.08	0.89	0.55-1.42	0.27	1.18	0.72-1.70	0.21	0.84	0.80-0.87	0.03
Siarczany, g/dm ³	0.44	0.41-0.46	0.03	0.54	0.13-2.20	0.54	1.34	0.23-2.59	0.64	1.15	0.98-1.44	0.21
Zasadowość, gCaCO ₃ /dm ³	3.39	3.00-3.55	0.26	1.47	0.81-3.00	0.54	1.43	0.37-4.75	1.07	1.20	0.70-1.51	0.36
pH	7.92	7.49-8.10	0.29	7.99	7.60-8.40	0.24	7.52	6.70-8.12	0.34	7.07	6.90-7.20	0.15
Potencjał redoks, mV	-333	-569-(-122)	204	-141	-346-(5)	90	-66	-356-(55)	89	-143	-214-(-33)	77
Zasobnia BPOK												
ChZT, g/dm ³	0.73	0.65-0.80	0.08	0.97	0.35-1.80	0.46	1.16	0.59-2.10	0.31	1.40	0.87-1.75	0.41
BZT_5 , g/dm ³	0.15	0.12-0.19	0.03	0.16	0.06-0.31	0.09	0.02	0.001-0.14	0.05	0.06	0.02-0.11	0.04
OWO, g/dm^3	0.27	0.20-0.31	0.05	0.39	0.11-0.73	0.21	0.47	0.11-0.87	0.17	0.51	0.26-0.79	0.22
LKT, g CH ₃ COOH /dm ³	0.04	0.04-0.05	0.003	0.06	0.02-0.17	0.04	0.06	0.003-0.19	0.04	0.06	0.01-0.16	0.07
Azot ogólny, g/dm ³	0.03	0.02-0.03	0.004	0.06	0.03-0.14	0.03	0.07	0.03-0.18	0.03	0.09	0.06-0.11	0.03
Azot amonowy, g/dm ³	0.02	0.01-0.02	0.005	0.02	0.01-0.04	0.01	0.03	0.004-0.13	0.02	0.04	0.02-0.07	0.02
Chlorki, g/dm ³	0.25	0.25-0.27	0.01	0.77	0.21-1.25	0.36	1.24	0.65-2.00	0.28	1.28	1.05-1.39	0.16
Siarczany, g/dm ³	0.30	0.29-0.32	0.01	0.74	0.23-1.24	0.29	1.68	0.15-2.60	0.55	1.24	0.98-1.39	0.18
Zasadowość, gCaCO ₃ /dm ³	0.75	0.54-1.25	0.34	0.68	0.55-1.13	0.14	0.94	0.26-2.25	0.59	1.02	0.7-1.17	0.22
рН	7.52	6.80-7.80	0.48	7.90	7.70-8.20	0.19	7.39	6.40-7.90	0.28	7	6.8-7.2	0.16
Potencjał redoks, mV	-242	-420-(-54)	173	-89	-181-(-29)	37	-27	-229-(53)	52	-215	-33-(-45)	135

Tabela 32. Zakresy i średnie stężenia zanieczyszczeń usunięte w odciekach z zasobni ZOK i BPOK w wyróżnionych fazach rozkładu

¹⁾Odchylenie standartowe
Azot ogólny i amonowy

Średnie stężenia azotu ogólnego i amonowego w odciekach z BPOK, we wszystkich wyróżnionych fazach rozkładu, były niższe od oznaczonych w odciekach ze ZOK, kolejno o:

- o faza $I^0 95$ i 96%
- o faza I 77 i 86%
- o faza II 30 i 25%,
- o faza III 47 i 64%.

Wyraźnie niższe stężenia azotu ogólnego w odciekach, zwłaszcza azotu amonowego potwierdzają pozytywny wpływ mechaniczno-biologicznego przetwarzania odpadów przed ich deponowaniem na składowisku. Obserwowany wzrost stężeń azotu oraz ChZT, OWO i LKT w kolejnych fazach rozkładu, wskazuje, że rozkład związków organicznych zasobnych w azot (białka) przebiega wolniej niż węglowodanów i tłuszczy [69].

Zanieczyszczenia mineralne

Stężenia chlorków i siarczanów w odciekach ze złoża ZOK i BPOK rosły praktycznie w całym okresie badań. W fazie I⁰ i I stężenia chlorki w odciekach z zasobni BPOK były niższe niż z zasobni ZOK o 67 i 13%, kolejno, a w okresie II i III były już wyższe o 5 i 34%. Stężenia siarczanów w odciekach z BPOK w fazie I⁰ były niższe o 32% niż w odciekach ZOK, a w kolejnych fazach (I, II, III) przyjmowały wyższe wartości o 27, 20 i 7%, kolejno. Przebiegi emisji chlorków i siarczanów w skali technicznej i laboratoryjnej były podobne i zgodne z prezentowanymi w literaturze [18, 84, 89].

pН

pH odcieków zarówno z zasobni ZOK jak i BPOK przyjmowały wysokie wartości, które w całym okresie badań tylko nieznacznie różniły się między sobą. W fazach I⁰, I i II wartości pH rosły: w zasobni ZOK od 7.92 do 8.07, zasobni BPOK od 7.52 do 7.95, a w fazie III nieznacznie malały: w zasobni ZOK do 7.50, a zasobni BPOK do 7.38. Wzrost wartości pH wiązał się z wyczerpywaniem LKT w złożu odpadów, a jego spadek z uruchomieniem rozpuszczenia (hydrolizy) substancji organicznych trudniej ulęgających rozkładowi po wyczerpaniu się substancji łatwo ulęgających biodegradacji (rys. 44).

Potencjał redoks

Potencjał redoks w wyszczególnionych fazach rozkładu rósł sukcesywnie od niskich ujemnych wartości wskazujących na warunki silnie redukcyjne: -333 mV (zasobnia S) i – 242 mV (zasobnia P), do wartości o mniejszym potencjale redukcyjnym: -72 mV (zasobnia S) oraz -38 mV (zasobnia P).

Zmiany pH i potencjału redoks przebiegały inaczej niż zaobserwowane w skali laboratoryjnej. Najprawdopodobniej różnice te wynikały z mniejszej intensywności procesów biochemicznych przebiegających w warunkach polowych niż kontrolowanych.

7.3.2.3 Ładunki zanieczyszczeń

Krzywe sumowe ładunków zanieczyszczeń wyemitowanych ze ZOK i z BPOK składowanych w warunkach polowych przedstawiono na rysunku 49. Pokazują one, że wyczerpywanie potencjału odpadów do wymywania zawartych w nich substancji w obu złożach przebiegało podobnie (podobne nachylenie krzywych i czasy rozpoczęcia ich "wypłaszczania"). W fazach I⁰ i I szybkość wymywania zanieczyszczeń ze złoża ZOK była wielokrotnie większa niż z BPOK (tabela 33). Szybkości wymywania zanieczyszczeń w warunkach polowych, we wszystkich fazach, były od kilku do kilkunastu razy niższe niż w warunkach laboratoryjnych (tabela 30). Ponadto, szybkości wymywania analizowanych zanieczyszczeń ze ZOK w fazach I⁰ i I, w warunkach polowych, były większe niż z BPOK, odwrotnie niż w warunkach laboratoryjnych, w których były niższe lub zbliżone. Jest to zrozumiałe i wynika z aktywności mikroorganizmów odpowiedzialnych za szybkość przemian, które w warunkach środowiskowych odbiegających dla nich od optymalnych, była wielokrotnie niższa. W tych niekorzystnych warunkach znacznie szybciej ulegały rozkładowi substancje organiczne podatne na biodegradacje, które w dużych ilościach występowały w ZOK. Natomiast przemiany składników trudniej ulegających biodegradacji, które pozostały w odpadach po ich tlenowej stabilizacji, przebiegały opornie. Po wyczerpaniu się substancji organicznych łatwo biodegradowalnych szybkości przemian w złożu ZOK i BPOK wyrównały się (fazy II i III).

Zasobnia	Fazy	Szybkość wymywania zanieczyszczeń, mg/(kg d)										
	przemian	ChZT	BZT ₅	OWO	LKT	Azot ogólny	Azot amonowy	Chlorki	Siarczany			
S	I_0	13.3	6.92	6.40	0.58	1.08	0.92	0.14	0.67			
	Ι	1.34	1.05	0.81	0.17	0.30	0.17	1.41	0.79			
	II	1.27	0.07	0.56	0.12	0.11	0.06	1.25	1.67			
	III	0.27	0.01	0.12	0.05	0.04	0.02	0.18	0.26			
	I ₀ +I+II+III	1.38	0.24	0.63	0.13	0.13	0.08	1.13	1.44			
	I^0	1.77	0.42	0.70	0.09	0.05	0.05	0.03	0.04			
	Ι	0.42	0.12	0.30	0.04	0.03	0.01	0.57	0.87			
Р	II	1.22	0.02	0.47	0.05	0.06	0.02	1.24	1.65			
	III	0.11	0.01	0.04	0.001	0.01	0.01	0.12	0.11			
	I ₀ +I+II+III	1.06	0.03	0.42	0.05	0.05	0.02	1.06	1.41			

Tabela 33. Szybkości wymywania zanieczyszczeń z zasobni ZOK i BPOK

Rys. 49. Krzywe sumowe całkowitych ładunków zanieczyszczeń usuniętych z zasobni S i P

Korzystnym efektem procesu MBP było zmniejszenie całkowitego ładunków wyemitowanych w odciekach z BPOK w stosunku do ZOK o (tabela 34):

zanieczyszczenia organiczne:

o ok. 23 % - ChZT, 34% - OWO i 86 % - BZT₅, 61% - LKT,

azot:

o 61% - azot ogólny, 76% - azot amonowy,

zanieczyszczenia mineralne:

o 6% - chlorki, 3% - siarczany.

Tabela 34. Ładunki zanieczyszczeń usunięte w odciekach ze ZOK i BPOK w wyróżnionych fazach i w całym okresie badań w skali technicznej

	Fazy		Ładunki zanieczyszczeń, g/Mg										
Zasobnia	przemian	ChZT	BZT ₅	OWO	LKT	Azot ogólny	Azot amonowy	Chlorki	Siarczany				
	I ⁰	214	111	102	9.2	17.3	14.7	2.2	10.7				
	Ι	76.2	59.7	46.1	9.7	17.4	9.7	80.6	45.1				
S	II	947	52.3	417	92.3	82.6	47.2	930	1241				
	III	26.2	1.1	11.8	4.6	7.3	1.7	17.3	25.1				
	I ₀ +I+II+III	1263	224	577	116	124.6	73.3	1030	1322				
	I^0	28.3	6.6	11.2	1.4	0.8	0.8	0.5	0.7				
	Ι	24.0	7.1	16.9	2.6	1.9	0.7	32.4	49.4				
Р	II	907	17.3	349	40.8	43.9	15.3	922	1228				
	III	11.2	0.6	3.5	0.3	0.9	0.6	11.8	10.8				
	I ₀ +I+II+III	971	31.6	381	45.1	47.5	17.4	967	1289				
				Ile	orazy								
	I^0	0.13	0.06	0.11	0.16	0.04	0.05	0.24	0.06				
	Ι	0.31	0.12	0.37	0.26	0.11	0.08	0.40	1.09				
P/S	II	0.95	0.33	0.84	0.44	0.53	0.32	0.99	0.99				
	III	0.42	0.50	0.30	0.07	0.22	0.34	0.43	0.07				
	I ⁰ +I+II+III	0.77	0.14	0.66	0.39	0.39	0.24	0.94	0.97				

Uzyskane wartości całkowitych ładunków zanieczyszczeń organicznych, form azotu oraz chlorków i siarczanów wskazują, że emisje zanieczyszczeń z odpadów po wstępnym ich przetworzeniu (nawet w przypadku krótkiej ich tlenowej stabilizacji; 5-6 tygodni) są znacząco niższe niż z odpadów nieprzetworzonych. Z literatury wynika, że intensywne kompostowanie odpadów przez okres 16–30 tygodni powoduje zmniejszenie emisji zanieczyszczeń organicznych i form azotu w odciekach ze składowanych BPOK nawet do 90% [26, 89, 121], a więc w stopniu zdecydowanie wyższym niż uzyskano w badaniach.

Reasumując na podstawie wyników badań można stwierdzić, że 5-6 tygodniowe napowietrzanie zmniejsza emisję ładunków zanieczyszczeń organicznych w stopniu

gwarantującym wypełnienie obowiązku wynikającego z dyrektywy o składowaniu odpadów do 2010 roku.

Interesującym kierunkiem dalszych badań, jaki nasuwa się po analizie uzyskanego materiału badawczego, jest ustalenie wpływu stopnia tlenowej stabilizacji odpadów na ekologiczny i ekonomiczny efekt unieszkodliwiania odpadów.

7.4. Stałe szybkości hydrolizy, acidogenezy i metanogenezy ZOK i BPOK

Wykorzystując wartości stężeń zanieczyszczeń organicznych w odciekach oznaczone w badaniach w skali laboratoryjnej i technicznej oraz zmodyfikowany model Zacharof'a (opisujący przemiany w złożu w skali czasu - punkt 6) wyznaczono średnie wartości stałych szybkości hydrolizy (k_h) , acidogenezy (k_a) i metanogenezy (k_m) badanych odpadów. Średnie wartości tych stałych, wyznaczone dla odpadów nieprzetworzonych i po stabilizacji biologicznej w warunkach tlenowych, składowanych w reaktorach bez recyrkulacji i z recyrkulacją w warunkach laboratoryjnych oraz w zasobniach bez recyrkulacji w skali technicznej, przedstawiono w tabeli 35.

Tabela 35. Stałe szybkości hydrolizy, acidogenezy i metanogenezy odpadów, badanych w skali laboratoryjnej i technicznej, obliczone na podstawie zmodyfikowanego modelu Zacharof'a

Stałe szybkości	Średnie wartości stałych, d ⁻¹											
		Skala lab	Skala techniczna									
	S	SR	Р	PR	S	Р						
k _h	0.20	0.21	0.67	0.47	0.03	0.05						
k _a	0.33	0.40	0.76	0.72	0.28	0.34						
k _m	0.24	0.27	1.72	1.00	0.28	0.21						

Wyznaczone wartości stałych szybkości biodegradacji ZOK składowanych w warunkach laboratoryjnych i technicznych oraz BPOK składowanych w warunkach technicznych mieściły się w bardzo szerokich zakresach wartości prezentowanych w literaturze [18, 19, 31, 34, 42, 54, 55, 62, 114, 119]. Natomiast wartości stałych szybkości fermentacji BPOK, składowanych w reaktorach w skali laboratoryjnej, były wyraźnie wyższe od tych danych [49, 70]. Na podkreślenie zasługuje również fakt, że średnie wartości stałych szybkości rozkładu odpadów w kolejnych fazach biodegradacji prowadzonej w warunkach laboratoryjnych były wyraźnie wyższe od wartości stałych opisujących przebieg procesu w skali technicznej.

Porównując, wyznaczone w badaniach, wartości stałych hydrolizy, acidogenezy i metanogenezy należy stwierdzić, że zgodnie ze stanem wiedzy, niezależnie od warunków

składowania, najniższe wartości przyjmowały stałe hydrolizy. Głównymi składnikami frakcji organicznej odpadów są celuloza (ok. 50% s.m.o.), hemiceluloza (ok. 22% s.m.o.) oraz ligniny (ok. 17% s.m.o.) [41]. Hydroliza tych trudno ulegających rozkładowi składników, a także podatnych na rozkład (tłuszczów i węglowodanów) jest generalnie uznawana jako etap limitujący szybkość fermentacji odpadów stałych [110].

Relacje między wyznaczonymi stałymi szybkości ZOK w poszczególnych fazach fermentacji są podobne do cytowanych w literaturze, jednak ich wartości są z reguły wyższe. W ZOK, podobnie jak w literaturze (tabela 14), najszybciej przebiegała faza acidogenezy (stałe szybkości fazy acidogennej osiągały najwyższe wartości). W fazie tej rozpuszczone w wodzie substancje chemiczne przetwarzane są przez bakterie acidogenne do krótkołańcuchowych kwasów organicznych, alkoholi, ditlenku węgla i wodoru. Wysokie wartości stałej szybkości acidogenezy świadczą o szybkim przekształcaniu w tej fazie produktów hydrolizy w substraty metanogenne. Podczas acidogenezy ogólna ilość substancji organicznych (ChZT, OWO) pozostaje praktycznie niezmieniona. Duża szybkość przemian w fazie acidogenezy oraz brak zmian wartości ChZT i OWO spowodowały, że wyróżnienie tej fazy w oparciu o przebieg zmian stężeń w odciekach oznaczonych wskaźnikami ich jakości było niemożliwe (punkt 7.3.1.1).

W prezentowanym modelu stałą szybkości acidogenezy wyznaczono w oparciu o wielkość produkcji biogazu. Zanieczyszczenia usuwane w odciekach stanowiły masę produktów fazy hydrolizy (węgla organicznego pomniejszoną o masę produktów hydrolizy przekształconą w biogaz). W BPOK stabilizowanych w warunkach laboratoryjnych najszybciej przebiegała faza metanogenezy. Stała szybkości metanogenezy była wyższa od stałej szybkości acidogenezy w reaktorze bez recyrkulacji ponad 2-krotnie, a z recyrkulacją 1.4 krotnie. Wyliczone wartości stałych szybkości rozkładu BPOK w kolejnych fazach pozwalają na następujące stwierdzenia:

- hydroliza składników organicznych odpadów po wstępnym biologicznym przetworzeniu w warunkach tlenowych przebiegała szybciej niż w przypadku odpadów nieprzetworzonych;
- substraty metanogenne wytwarzane z produktów hydrolizy BPOK są bardzo łatwo przyswajane przez bakterie metanowe w optymalnych warunkach środowiskowych utrzymywanych w reaktorach laboratoryjnych.

Stałe szybkości rozkładu BPOK wyznaczone na podstawie pomiarów w warunkach technicznych zachowywały podobne relacje do zaobserwowanych w ZOK; najwyższa stała

szybkości rozkładu była w fazie acidogennej, a najniższa w fazie hydrolizy. W warunkach technicznych stała szybkość metanogenezy BPOK była niższa niż stała szybkość acidogenezy (przeciwnie niż w warunkach laboratoryjnych). Prawdopodobnie przyczyną były niższe temperatury w złożu odpadów. Dotychczas nie znaleziono żadnej metanowej bakterii psychrofilowej, a bakterie mezofilowe w temperaturze poniżej 25°C wykazują stosunkowo małą aktywność. Charakterystyczna dla BPOK stabilizowanych w warunkach technicznych była również niska szybkość wymywania zanieczyszczeń (tabela 33).

Wyznaczone w badaniach stałe szybkości hydrolizy, acidogenezy i metanogenezy ustalone dla odpadów ZOK można uznać za wysokie. W pacy Gracia de Cortazar'a i Monzon'a [31], w modelu biochemicznym symulującym zmiany emisji zanieczyszczeń w odciekach i biogazie na składowisku ZOK, najlepsze dopasowanie krzywych teoretycznych i wyznaczonych doświadczalnie uzyskano przyjmując wartość stałej szybkości hydrolizy dla frakcji łatwo ulegającej hydrolizie równą 0.00023 d⁻¹, dla frakcji trudno ulegającej biodegradacji 0.00003 d⁻¹, a wartości stałych szybkości acetogenezy i metanogenezy odpowiednio, 0.01 i 0.02 d⁻¹.

Wartości stałych szybkości hydrolizy BPOK ustalone dla odpadów stabilizowanych w skali laboratoryjnej były również wyraźnie wyższe od wartości przedstawionych w literaturze. Musmeci [70], stałe szybkości hydrolizy odpadów przekompostowanych, o różnej procentowej zawartości trawy, liści i kartonów, określił w przedziale od 0.165 do 0.190 d⁻¹. Z kolei Komilis i inni [49], wartość stałej szybkości hydrolizy odpadów kuchennych, łatwo ulegających biodegradacji, wyznaczyli na poziomie 0.1 d⁻¹, a trudno ulegających rozkładowi 0.05 d⁻¹. Wartości stałej hydrolizy wyznaczone w badaniach w reaktorach BPOK z recyrkulacją i bez były około 2.6 i 3.8 krotnie wyższe od wartości średniej podanej przez Musmeci'ego i około 4.7 i 6.7 krotnie od wartości podanej przez Komilis'a i innych dla frakcji odpadów kuchennych łatwo ulegających biodegradacji.

Duże różnice wartości stałych szybkości hydrolizy wyznaczonych w badaniach (od 0.03 do 0.67 d⁻¹) oraz podawanych w literaturze od 0.0003 d⁻¹ (dla frakcji trudno ulęgającej biodegradacji) do 0.55 d⁻¹ (dla odpadów żywności), potwierdzają, że bardzo duży wpływ na szybkość rozkładu odpadów mają ich skład chemiczny i warunki składowania. Wyniki badań wykazały, że parametrami krytycznymi były wilgotność i temperatura odpadów. Wartości stałych wyznaczone w warunkach laboratoryjnych, w których odpady utrzymywano w temperaturze > 25° C, w warunkach pełnego nasycenia wodą dodając ją każdego dnia, były dla ZOK – około 7 a dla BPOK – około 13 krotnie wyższe od wyznaczonych w skali technicznej, w warunkach naturalnego nawodnienia odpadów i przez większą część roku

niższej temperaturze. Recyrkulacja odcieków dodatkowo przyspieszyła proces hydrolizy około 1.35 razy. Stosunkowo mały wpływ recyrkulacji na intensywność procesu hydrolizy, był wynikiem dobrego nawodnienia odpadów poprzez stałe dodawanie wody symulującej opady atmosferyczne. Niewielki korzystny wpływ recyrkulacji na szybkość przemian w prowadzonym doświadczeniu należy tłumaczyć poprawą rozprowadzenia substancji odżywczych w złożu odpadów i rozcieńczaniem tworzących się lokalnie, stężonych roztworów substancji toksycznych. W rzeczywistych warunkach składowania odpadów wpływ recyrkulacji będzie zwielokrotniony [2, 49, 72].

Zaskakujące są wyższe wartości stałych hydrolizy BPOK niż ZOK, które zawierały więcej składników łatwo ulegających biodegradacji. Zaobserwowane zjawisko należy tłumaczyć:

- niższym stopniem stabilizacji użytych w badaniu BPOK (odpady stabilizowane były 5
 6 tygodni, podczas gdy do pełnej stabilizacji wymagany jest okres minimum 12 tygodni [101]);
- o dobrym rozdrobnieniem BPOK, dzięki czemu większa powierzchnia odpadów była dostępna dla mikroorganizmów (odpady podczas kompostowania były kilkakrotnie przerzucane);
- wyższą podatnością na rozkład beztlenowy odpadów wstępnie przetworzonych w warunkach tlenowych, co wykazali w swoich badaniach Capella i inni [10].

Wyznaczone wartości stałych szybkości acidogenezy i metanogenezy wahały się w zakresach: k_a - od 0.28 do 0.76 d⁻¹ i k_m - od 0.21 do 1.72 d⁻¹. Różnice między wartościami tych stałych wyznaczonych w warunkach laboratoryjnych i w skali technicznej były mniejsze niż w przypadku stałych szybkości hydrolizy. Średnia wartość k_a wyznaczona w warunkach laboratoryjnych była w złożu ZOK 1.2 razy wyższa od wartości stałej ustalonej w skali technicznej, a dla BPOK 2.7 razy wyższa. Stała k_m była odpowiednio 1.04 i 8.2 razy wyższa. Na rysunkach 50-52 przedstawiono zmiany mas węgla (przedstawione jako krzywe sumowe) usuniętego z BPOK i ze ZOK stabilizowanych w skali laboratoryjnej z i bez recyrkulacji odcieków oraz w skali technicznej, ustalone w oparciu o wyznaczone stałe szbkości rozkładu k_h , k_a , k_m (krzywa symulowana – lina ciągła) oraz ich krzywe wyznaczone w oparciu o

badania własne (krzywa doświadczalna - linia przerywana).

Skala laboratoryjna

Zmiany zawartości węgla organicznego w badanych odpadach (straty) oraz ilości węgla organicznego emitowane w odciekach, gazie i metanie, wyznaczone doświadczalnie oraz symulowane w oparciu o wyznaczone średnie stałe szybkości przemian charakteryzowały się dobrym dopasowaniem wartości w reaktorach ZOK i gorszym w reaktorach BPOK (rys. 50 - 51).

Bardzo dobre dopasowanie w reaktorach ZOK i BPOK uzyskano dla krzywych reprezentujących ubytek masy węgla organicznego w odpadach stałych. Symulowana masa węgla usunięta z odpadów stałych była w stosunku do danych ustalonych doświadczalnie wyższa o: reaktor S - 0.03% i reaktor SR - 0.04% (rys. 50), reaktor P i PR - 0.06% (rys. 51). Dopasowanie krzywych opisujących masy węgla usunięte w odciekach, metanie i biogazie w czasie trwania doświadczenia było również zadowalające. Jednak różnice wartości teoretycznych i doświadczalnych były nieznacznie większe w reaktorach ZOK i duże w reaktorach BPOK.

Symulowane masy węgla organicznego emitowanego w odciekach z reaktorów S i SR w czasie trwania badań były wyższe od wartości wyznaczonych doświadczalnych o 0.1 i 0.14% odpowiednio. Symulowana masa węgla usuniętego w biogazie z reaktora S była wyższa od wyznaczonej doświadczalnie o 0.06%, a z reaktora SR wyższa o 0.01%, natomiast symulowana wartość węgla usunięta w metanie o 0.2 i 0.04 %, odpowiednio.

W przypadku odpadów przekompostowanych rozbieżności między wartościami symulowanymi i doświadczalnymi były znacząco wyższe. Symulowane masy węgla usunięte w odciekach z reaktorów P i PR w czasie trwania badań były wyższe od wartości ustalonej doświadczalnej o 23.0 i 35.0%. Symulowana masa węgla usunięta w biogazie z reaktora P była niższa o 18.0%, a z reaktora PR wyższa o 21.0%, natomiast masa węgla usunięta w metanie z reaktora P była niższa o 32.0%, a w reaktorze PR o 28.0%.

Najgorsze dopasowie krzywych symulowanych z doświadczalnymi dla odpadów BPOK ustalono dla symulacji węgla organicznego usuniętego w odciekach. Wskazuje to, że opisywanie hydrolizy odpadów BPOK ekspotencjalnym równaniem pierwszego rzędu nie całkowicie oddaje charakter procesu przebiegającego w tych odpadach.

Skala techniczna – kompostownia

W skali technicznej najlepsze dopasowania, uzyskano dla krzywych strat masy węgla w odpadach stałych i emisji węgla w biogazie, a najgorsze dla krzywych obrazujących emisję węgla organicznego w odciekach, podobnie jak w skali laboratoryjnej (rys. 52).

Masa węgla usunięta z odpadów stałych w czasie trwania badań, obliczona w oparciu o wyznaczone stałe kinetyczne z równań modelowych, była w stosunku do danych ustalonych doświadczalnie wyższa o: zasobnia S – 0.01%, zasobnia P – 0.03%. Symulowane masy węgla organicznego usunięte w odciekach ustalone dla zasobni S i P w stosunku do wyznaczonych doświadczalnie były wyższe o: 28%, w biogazie niższe o: 9 i 5%, i w metanie o 0.13 i 7%, odpowiednio.

Niski stopień dopasowania zhydrolizowanego węgla organicznego usuniętego w odciekach ze ZOK i BPOK może być związane z:

- o wysokimi prędkościami wymywania zanieczyszczeń w odciekach ze ZOK;
- niejednorodnością i niskim stopniem zagęszczenia odpadów w zasobniach co powodowało, że część wody opadowej migrowała przez złoże kanałami nie uczestnicząc w wymianie masy (świadczy o tym stosunek objętości odcieków do objętości opadów, który wyniósł około 70% oraz stosunkowo niskie stężenia zanieczyszczeń w odciekach).

Rys. 50. Symulowane i doświadczalne krzywe wyznaczone dla ZOK składowanych w warunkach laboratoryjnych w reaktorach bez (reaktor S –ZOK) i z recyrkulacją (reaktor SR-ZOK-R): a) strat masy węgla organicznego, b) masy węgla emitowanego w odciekach (faza hydrolizy), c) masy węgla emitowanego w biogazie, d) masy węgla emitowanego w metanie (faza metanogenezy)

Rys. 51. Symulowane i doświadczalne krzywe wyznaczone dla BPOK składowanych w warunkach laboratoryjnych w reaktorach bez (reaktor P – BPOK) i z recyrkulacją (reaktor PR - BPOK-R): a) strat masy węgla organicznego, b) masy węgla emitowanego w odciekach (faza hydrolizy), c) masy węgla emitowanego w metanie (faza metanogenezy)

Rys. 52. Symulowane i doświadczalne krzywe wyznaczone dla ZOK i BPOK składowanych w warunkach technicznych: a) strat masy węgla organicznego, b) masy węgla emitowanego w odciekach (faza hydrolizy), c) masy węgla emitowanego w biogazie, d) masy węgla emitowanego w metanie (faza metanogenezy)

7.5. Wyznaczenie prognozowanych mas węgla organicznego usuniętego w odpadach w fazie hydrolizy, acidogenezy i metanogenezy w oparciu o wyznaczone doświadczalnie stałe rozkładu

Dobre dopasowanie krzywych symulujących zmiany masy węgla w odpadach oraz jego emisję w odciekach i biogazie z krzywymi doświadczalnymi dla ZOK upoważniają do podjęcia próby prognozowania ich zmian dla okresu długoterminowego.

W pracy zaprezentowano również prognozę strat masy węgla w odpadach, emisji masy węgla w odciekach i biogazie dla BPOK pomimo niskiego dopasowania krzywych symulacyjnych i doświadczalnych. Prognozy te wyznaczono, mając świadomość ich niskiej wiarygodności, ze względu na ich brak w dostępnej autorowi literaturze.

Prognozy opracowano wykorzystując numeryczny program Mathematica 4.1., w oparciu o wyznaczone stałe szybkości rozkładu odpadów (tabela 35) oraz równania (47)–(50).

Na rysunkach 53–54 oraz w tabeli 36 przedstawiono prognozowane zmiany mas węgla wyznaczone dla warunków optymalnych (dane uzyskane w skali laboratoryjnej), a na rysunku 55 i w tabeli 37 dla warunków technicznych.

Weryfikację wyznaczonych emisji mas węgla dokonano porównując je ze współczynnikami przenoszenia węgla w odciekach (K_p) i w biogazie (K_g) obliczonych zgodnie z równaniem (48) dla ZOK po 10 latach ich składowania (punkt 2.7.3.), oraz porównując je do przedstawionych w literaturze zakresów wartości stężeń zanieczyszczeń organicznych (wyrażonych w postaci stężeń OWO) usuwanych w odciekach ze ZOK w okresie perspektywicznym (tabela 16 a).

10 20 Lata 30 40 50 0 10 20 Lata 30 40 50 Rys. 53. Prognostyczne krzywe dla reaktorach bez recyrkulacji (S i P): a) strat masy węgla organicznego, b) stężenia OWO w odciekach, c) produkcji biogazu

Rys. 54. Prognostyczne krzywe dla reaktorach z recyrkulacją (SR i PR): a) strat masy węgla organicznego, b) stężenia OWO w odciekach, c) produkcji biogazu

w odciekach, c) produkcji biogazu

Wyszazagólniania			Prognoz	zowane r	nasy węg	gla biode	gradowa	lnego (w	g/kg odj	oadów) v	v latach:			Granica
wyszczegomenie	0	2.5	5	7	10	15	20	25	30	35	40	45	50	funkcji
ZOK														
Strata masy węgla w odpadach	111	108	47.2	31.1	16.6	5.86	2.06	0.73	0.25	0.09	0.03	0.01	0.004	3.87x10 ⁻ 905759
Emisja masy węgla w odciekach	-	21.6	48.8	55.9	62.3	67.1	68.7	69.3	69.5	69.6	69.6	69.6	69.7	69.7
Emisja masy węgla w biogazie	-	11.4	38.2	54.3	59.2	60.4	60.7	60.8	60.8	60.8	60.8	60.8	60.9	60.9
ZOK z recyrkulacją														
Strata masy węgla w odpadach	116.7	68.8	29.5	19.3	10.3	3.6	1.2	0.43	0.15	0.05	0.02	0.006	0.002	1.1×10^{-918199}
Emisja masy węgla w odciekach	-	17.0	45.5	59.5	64.3	66.1	66.6	66.8	66.8	66.9	66.9	67.0	67.0	67.0
Emisja masy węgla w biogazie	-	14.6	45.1	52.9	58.8	61.8	62.3	62.4	62.4	62.4	62.5	62.5	62.5	62.5
					B	POK								
Strata masy węgla w odpadach	46	8.5	0.57	0.15	0.02	$6x_{4}^{10^{-1}}$	$2x_{5}^{10^{-1}}$	$7x_{7}^{10^{-1}}$	$3x_{8}^{10^{-1}}$	$9x_{10}^{-10}$	$3x_{11}^{10}$	$1 x 10^{-12}$	$4x_{14}^{10^{-14}}$	1.6x10 ⁻ 2932972
Emisja masy węgla w odciekach	-	17.6	28.8	29.4	29.6	29.7	29.7	29.7	29.7	29.7	29.7	29.7	29.7	29.7
Emisja masy węgla w biogazie	-	10.1	18.0	18.6	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8
]	BPOK z	recyrkula	acją							
Strata masy węgla w odpadach	57.7	17.6	2.6	1.02	0.25	0.02	$2x_{3}^{10^{-1}}$	$2x_{4}^{10^{-1}}$	1x10 ⁻ 5	$2x_{6}^{10^{-1}}$	$2x_{7}^{10^{-1}}$	1x10 ⁻ 8	1x10 ⁻ 9	3.6x10 ⁻ 2060282
Emisja masy węgla w odciekach	-	15.3	30.5	32.4	34.4	34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
Emisja masy węgla w biogazie	-	9.65	19.9	20.8	21.1	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3

Tabela 36. Prognozowane masy węgla biodegradowalnego usuwanego z odpadów dla 50 letniego okresu składowania – warunki laboratoryjne

Wyggogogólnionio			Progr	nozowan	e masy	węgla bi	iodegrad	lowalneg	go (w g/l	kg odpa	dów) w I	latach:			Granica funkcji
wyszczegomenie	0	2.4	10	30	50	70	90	100	125	150	175	200	225	250	
ZOK															
Strata masy węgla w odpadach	112	103	77.6	41.0	21.8	11.4	6.05	4.41	1.98	0.89	0.40	0.18	0.08	0.04	7.7×10^{-138481}
Emisja masy węgla w odciekach	-	0.83	12.9	30.2	39.3	44.2	45.6	47.8	48.8	49.2	49.4	49.5	49.5	49.5	49.6
Emisja masy węgla w biogazie	-	2.84	44.7	55.0	55.2	55.2	55.2	55.2	55.2	55.2	55.2	55.2	55.2	55.2	55.2
						BPOI	K								
Strata masy węgla w odpadach	47	41.8	29.5	13.7	6.34	2.94	1.36	0.93	0.26	0.09	0.04	0.01	$5x_{3}^{10^{-1}}$	$3x_{3}^{10^{-1}}$	2.4×10^{-120075}
Emisja masy węgla w odciekach	-	0.46	4.2	9.06	11.3	12.4	12.8	13.0	13.2	13.2	13.2	13.2	13.2	13.2	13.2
Emisja masy węgla w biogazie	-	1.88	15.8	17.6	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7	17.7

Tabela 37. Prognozowane masy węgla biodegradowalnego usuwanego z odpadów dla 250 letniego okresu składowania – warunki techniczne

Wartości współczynników migracji K_p i K_g (stosunek masy węgla organicznego wyemitowanego w odciekach (K_p) i gazie (K_g) do całkowitej ilości węgla organicznego zawartego w odpadach) obliczone w oparciu o prognozowane masy węgla usunięte w odciekach i gazie ze ZOK i z BPOK po 10 latach ich składowania w warunkach laboratoryjnych w reaktorach z recyrkulacją i bez, oraz w warunkach technicznych przedstawiono w tabeli 38.

W tabeli 39 przedstawiono czasy wyczerpywania się węgla organicznego z odpadów (M_s) oraz czasy jego emisji w odciekach (M_a) i biogazie (M_b) .

Tabela 38. Wartości współczynnika przeniesienia zanieczyszczeń z BPOK i ze ZOK usuniętych w odciekach K_p i biogazie K_g

	Wartości współczynnika K _p i K _g										
				Skala tech	niczna						
Real	ktor S	S Reaktor SR		Reaktor P		Reaktor PR		Zaso	obnia S	Zasobnia P	
K _p	Kg	K _p	Kg	K _p	Kg	K _p	Kg	K _p	K _g	K _p	Kg
0.27	0.54	0.33	0.58	0.48	0.99	0.50	0.89	0.08	0.39	0.09	0.44

W dostępnej literaturze nie znaleziono wartości współczynników migracji zanieczyszczeń w odciekach i biogazie ze ZOK i z BPOK, wyznaczonych w warunkach laboratoryjnych dla okresu perspektywicznego. Jedyne dostępne dane, cytowane w licznych publikacjach podali Belevi i Bacicini [4]. Wyznaczone one zostały na składowisku ZOK po 10 latach jego eksploatacji i wyniosły $K_p = 0.003$ i $K_g = 0.22$.

Wyznaczona w pracy wartość współczynnika przeniesienia K_g dla odpadów stabilizowanych w warunkach technicznych była wyższa o 44% od podanej przez Belevi'ego i Baccini'ego, a wartość K_p aż 27-krotnie. Wartość współczynnika K_g po 10 latach wyznaczona dla odpadów składowanych w warunkach laboratoryjnych była o kilkanaście punktów procentowych wyższa niż dla odpadów składowanych w warunkach technicznych natomiast K_p ponad 3 razy wyższa. Jest to zrozumiałe, ponieważ intensywność przemian w optymalnych warunkach panujących w reaktorach była większa niż w zasobniach narażonych na zmienne warunki atmosferyczne (głównie temperatury).

Interesujące jest również stwierdzenie, że wartości współczynników K_p i K_g obliczone dla BPOK były wyższe od wartości obliczonymi dla ZOK. Świadczy to o lepszych warunkach wymywania (wyższy stopień rozpuszczenia stałych komponentów organicznych) oraz lepszych warunkach metanogenezy.

Pomimo tak istotnych różnic między wyznaczonymi w pracy współczynnikami przeniesienia a przedstawionymi przez Belevi'ego, wyliczone na podstawie prognozowanych zmian mas węgla w odciekach usuwanych ze ZOK stabilizowanych w warunkach technicznych stężenia zanieczyszczeń organicznych (wyrażonych jako OWO) mieszczą się lub są bardzo blisko zakresów prezentowanych w literaturze.

Według Belevi'ego i Bacini [52] stężenia OWO po 20 latach składowania ZOK znajdują się w przedziale od 500 do 1700 mg/dm³, a po 100 latach składowania "młodych" ZOK od 129 do 545 mg/dm³. Stężenia OWO wyznaczone w pracy dla ZOK na podstawie prognozowanej masy węgla w odciekach wyemitowanej po 20 latach ze ZOK wyniosły 2174 mg/dm³, a z BPOK 94.8 mg/dm³. Natomiast stężenia OWO wyznaczone dla perspektywicznego okresu 100 lat wyniosły dla ZOK - 170 mg/dm³ i dla BPOK - 49 mg/dm³. Stężenia obliczone na podstawie prognozowanych mas węgla w odciekach ustalone w warunkach laboratoryjnych nie mieściły się w prezentowanych zakresach. Było to spowodowane innymi warunkami procesu i w konsekwencji wyższymi wartościami stałych szybkości rozkładu w oparciu, o które były liczone prognozowane masy. Stężenia w reaktorach S i SR po 20 latach składowania wyniosły 183 i 158 g/dm³, a w reaktorach P i PR były śladowe.

Czasy wyczerpywania emisji zanieczyszczeń ze ZOK i z BPOK ustalone dla skali laboratoryjnej potwierdzają dane literaturowe, że zarówno recyrkulacja odcieków jak i ich wstępne przetwarzanie zmniejszają czas emisji zanieczyszczeń w odciekach i biogazie (tabela 39).

Czas		Skala labo	Skala półtechniczna			
emisji węgla org., lata	Reaktor S	Reaktor SR	Reaktor P	Reaktor PR	Zasobnia S	Zasobnia P
Ms	35	33	8	13	220	112
Mq	50	44	13	15	287	149
M _b	48	40	9	11	54	48

 Tabela 39. Czasy wyczerpania emisji zanieczyszczeń z ZOK i BPOK

7.6. Podsumowanie

Produkcja odcieków

- Objętości odcieków zebrane z odpadów nieprzetworzonych biologicznie były wyraźnie wyższe niż z odpadów po MBP: o 11% w skali laboratoryjnej i 35% w skali technicznej (rys. 19 i 35). Było to wynikiem bardziej niejednorodnej struktury ZOK oraz uwalniania większej ilości wody w wyniku rozkładu składników łatwo ulegających biodegradacji, których udział w odpadach nieprzetworzonych był znacznie większy niż w BPOK.
- Recyrkulacja odcieków przyczyniła się do intensyfikacji procesów rozkładu, czego efektem była większa o 23% produkcja odcieków zarówno ze ZOK, jak i z BPOK (tabela 20).

Stężenia i ładunki zanieczyszczeń

- Ładunki zanieczyszczeń organicznych emitowane w odciekach z BPOK składowanych w reaktorach laboratoryjnych były wyższe niż usuwane w odciekach ze ZOK w fazie fermentacji kwaśnej i metanowej niestabilnej, a w fazie fermentacji metanowej stabilnej, zdecydowanie niższe (punkt 7.3.1.3). Jednak całkowite ładunki zanieczyszczeń organicznych, wyrażone jako ChZT, OWO, BZT₅ i LKT, usunięte w czasie badań w odciekach z reaktora ZOK były wyższe niż z BPOK o 21, 18, 6 i 23%. Zjawisko to należy tłumaczyć:
 - o dużą szybkością rozkładu składników odpadów zarówno łatwo, jak i trudno ulegających biodegradacji w optymalnych warunkach środowiskowych panujących w reaktorach laboratoryjnych;
 - o korzystnym wpływem wstępnej tlenowej stabilizacji odpadów na hydrolizę w warunkach beztlenowych stałych substancji organicznych obecnych w odpadach;
 - o oraz większą podatnością na metanizację produktów powstających w fazie hydrolizy.
- 2. Ładunki zanieczyszczeń usunięte w odciekach z BPOK składowanych w warunkach polowych, w fazie hydrolizy tlenowej i fermentacji kwaśnej, były znacznie niższe od ładunków usuniętych w odciekach ze ZOK, a w fazie fermentacji metanowej niestabilnej i stabilnej wyższe lub zbliżone do emitowanych ze ZOK odwrotnie niż w warunkach laboratoryjnych. Przyczyną obserwowanego zjawiska były znacznie niższe szybkości rozkładu odpadów składowanych w zasobniach w skali technicznej

wywołane niekorzystnymi warunkach środowiskowymi (niska temperatura, słabe nawodnienie odpadów w zasobniach). Szczególnie wolno przebiegała biodegradacja składników mniej podatnych na rozkład, które dominowały w BPOK. Całkowity ładunek ChZT, OWO, BZT₅ i LKT usunięty w odciekach z BPOK w okresie prowadzenia badań był niższy niż wyemitowany ze ZOK o 23, 34, 86, i 61%. Stopień ograniczenia emisji zanieczyszczeń organicznych (ChZT, OWO, BZT₅ i LKT) w odciekach z BPOK w porównaniu do emisji ze ZOK w warunkach polowych był wyraźnie wyższy niż w doświadczeniach laboratoryjnych (punkt 7.3.2.3).

- 3. W doświadczeniach laboratoryjnych stężenia azotu ogólnego w odciekach z BPOK, w wyróżnionych fazach rozkładu, były wyższe niż w odciekach ze ZOK, natomiast stężenia azotu amonowego były niższe (tabele 28 i 29). Wyniki badań pozwalają na stwierdzenie, że w optymalnych warunkach rozkładu utrzymywanych w rektorach laboratoryjnych (stałe nawadnianie odpadów, temperatura) szybkość hydrolizy obecnych w odpadach złożonych związków zawierających azot (białka) była większa niż amonifikacji powstających produktów. Całkowite ładunki azotu ogólnego i amonowego usunięte z BPOK były niższe niż ze ZOK o 7 i 50%, kolejno (tabela 31).
- 4. W doświadczeniu prowadzonym w skali technicznej stężenia azotu ogólnego i amonowego w odciekach usuwanych z BPOK, w wyróżnionych fazach rozkładu, były niższe niż w odciekach ze ZOK (tabela 32). Charakterystyczny był sukcesywny wzrost stężeń azotu amonowego i ogólnego w odciekach z zasobni BPOK w całym okresie badań. Pozawala to stwierdzić, że szybkość hydrolizy złożonych związków zawierających azot i amonifikacja powstających produktów w dużym stopniu zależy od uwodnienia odpadów i temperatury złoża. Całkowite ładunki azotu ogólnego i amonowego usunięte z zasobni BPOK były niższe od wyemitowanych ze ZOK, o: 61 i 76% (tabela 34).
- 5. Stężenia siarczanów w odciekach z reaktorów laboratoryjnych z BPOK, we wszystkich wyróżnionych fazach rozkładu, były wyższe niż w odciekach z reaktorów ze ZOK (tabele 28 i 29), natomiast ich całkowity ładunek wyemitowany w czasie trwania badań był niższy od ładunku usuniętego ze ZOK o 45% (tabela 31). Wyższa emisja siarczanów ze ZOK wynikała między innymi z większej objętości odcieków powstających w reaktorach z tymi odpadami niż w reaktora z BPOK oraz z dłuższego czasu trwania faz rozkładu ZOK charakteryzujących się wysokimi stężeniach siarczanów w odciekach. Wysokie stężenia siarczanów w odciekach świadczą o niskiej zdolności redukcyjnej złoża badanych odpadów (braku w złożu stref silnie

beztlenowych), co potwierdziły stosunkowo wysokie wartości potencjału redoks w odciekach z okresu po uruchomieniu fazy fermentacji metanowej (punkt 7.3.1.2).

- 6. W doświadczeniu prowadzonym w skali technicznej stężenia siarczanów w odciekach ze ZOK w fazie hydrolizy tlenowej były wyższe niż w odciekach z BPOK, a w fazach fermentacji kwaśnej oraz metanowej niestabilnej i stabilnej niższe (tabela 32). Całkowity ładunek siarczanów wymyty z BPOK w czasie trwania badań był nieznacznie wyższy od ładunku usuniętego ze ZOK; tylko o 3% (tabela 34).
- 7. Stężenia chlorków w odciekach z BPOK były niższe niż w odciekach ze ZOK, zarówno w warunkach laboratoryjnych, jak i polowych (tabele 28, 29 i 32). Całkowity ładunek chlorków usunięty w czasie trwania badań z BPOK był niższy niż usunięty ze ZOK: w warunkach laboratoryjnych ponad 2-u krotnie, a w warunkach polowych tylko o 6% (tabele 31 i 34).
- 8. Recyrkulacja odcieków intensyfikowała procesy przebiegające w złożu odpadów zapewniając szybsze wpracowanie w złożu stabilnej fazy fermentacji metanowej oraz wyższą produkcję metanu (punkt 7.2.1). Całkowite ładunki ChZT, OWO i BZT₅ usunięte w odciekach z reaktora ze ZOK z recyrkulacją były wyższe od usuniętych z rektora z BPOK z recyrkulacją o 10, 5 i 8%, natomiast całkowite ładunki LKT, azotu ogólnego, azotu amonowego, chlorków i siarczanów były niższe o odpowiednio: 14, 9, 9, 25 i 8% (tabela 31).
- 9. Szybkości wymywania zanieczyszczeń z BPOK, składowanych w warunkach laboratoryjnych, w fazie fermentacji kwaśnej i metanowej niestabilnej były wyższe niż ze ZOK, a w fazie fermentacji stabilnej niższe lub porównywalne (tabela 30). W skali technicznej szybkości wymywania zanieczyszczeń z BPOK, we wszystkich wyróżnionych fazach, były zdecydowanie niższe niż ze ZOK (tabela 33). Różnice te wynikały z różnej aktywności mikroorganizmów odpowiedzialnych za intensywność przemian w złożu odpadów. W warunkach środowiskowych odbiegających znacznie od optymalnych dla mikroorganizmów (warunki w skali technicznej; niska wilgotność odpadów, zmienna często niska temperatura) ich aktywność była wielokrotnie niższa. W tych warunkach znacznie szybciej ulegały rozkładowi substancje organiczne łatwo biodegradowalne, które w dużych ilościach występowały w ZOK. Przemiany składników trudniej ulegających biodegradacji, które dominowały w BPOK przebiegały znacznie wolniej. W korzystnych warunkach laboratoryjnych (stała temperatura otoczenia > 22°C, nasycenie odpadów wodą) rozkład substancji

organicznych w początkowym okresie badań przebiegał z duża szybkością w obu rodzajach odpadów.

Produkcja metanu

- 1. Produkcja metanu z BPOK była dużo niższa niż ze ZOK (tabela 23).
- 2. Tlenowa stabilizacja odpadów komunalnych przed składowaniem przyspiesza uruchomienie w złożu fazy fermentacji metanowej w związku z brakiem fazy acidogennej. Metan w gazie z reaktora z BPOK pojawił się 72 dni wcześniej niż z reaktora ze ZOK, a zawartość metanu w gazie z BPOK, w fazie stabilnej fermentacji metanowej, była o 10% wyższa niż ze ZOK (rys. 32).
- Recyrkulacja odcieków wyraźnie intensyfikowała produkcję metanu zarówno ze ZOK, jak i z BPOK. Objętość metanu wytworzonego w rektorze z recyrkulacją w stosunku do reaktora bez recyrkulacji była wyższa: dla ZOK o 39%, a dla BPOK o 32% (tabela 23).
- 4. W reaktorach z recyrkulacją odnotowano zjawisko hamowania metanogenezy wywołane wysokimi stężeniami kwasów organicznych zawracanych do rektora wraz z recyrkulowanymi odciekami. W reaktorze ze ZOK objawiało się to późniejszym uruchomieniem w złożu fermentacji metanowej niestabilnej, a w przypadku reaktora z BPOK dłuższym czasem trwania okresu stabilizacji produkcji metanu (punkt 7.3.1.1).
- 5. Recyrkulacja odcieków istotnie skróciła czas intensywnej fermentacji odpadów. W ostatnim tygodniu badań szybkość produkcji metanu w reaktorze z BPOK z recyrkulacją, była blisko 2 krotnie niższa niż w reaktorze BPOK bez recyrkulacji, natomiast w reaktorze ZOK z recyrkulacją o 2.8 razy niższa niż w reaktorze ze ZOK bez recyrkulacji (tabela 23).

Stałe szybkości rozkładu

- 1. Średnie wartości stałych szybkości rozkładu odpadów, w wyróżnionych fazach, ustalone w warunkach laboratoryjnych były znacznie wyższe od średnich wartości stałych wyznaczonych w skali technicznej (tabela 35). Wartości stałych szybkości rozkładu ZOK wyznaczone dla odpadów składowanych w skali laboratoryjnej i technicznej oraz BPOK składowanych w skali technicznej mieściły się w bardzo szerokich zakresach wartości prezentowanych w literaturze. Natomiast wartości stałych szybkości rozkładu BPOK, składowanych w reaktorach w skali laboratoryjnej, były wyraźnie wyższe od tych danych (punkt 2.7.2.).
- 2. Wartości stałych szybkości hydrolizy, acidogenezy i metanogenezy BPOK w skali laboratoryjnej i technicznej były wyższe od ustalonych dla ZOK (tabela 35).

Potwierdza to doniesienia literaturowe, że tlenowa stabilizacja odpadów komunalnych przed składowaniem zwiększa podatność na rozkład składników organicznych zawartych w odpadach.

- 3. Spośród wyznaczonych stałych szybkości rozkładu najniższe wartości mają stałe hydrolizy odpadów, zarówno dla ZOK i BPOK, niezależnie od warunków składowania oraz stosowania lub nie recyrkulacji odcieków (tabela 35). Potwierdza to ogólnie znany fakt, że hydroliza jest najwolniejszym etapem przemian odpadów w procesie ich fermentacji.
- 4. Ustalono, że najszybciej przebiegającym etapem przemian ZOK w warunkach polowych i laboratoryjnych, z i bez recyrkulacji, oraz BPOK składowanych w warunkach polowych była acidogeneza (najwyższe wartości stałych) (tabela 35). Pozwala to stwierdzić, że acidogeneza w żadnym stopniu nie limituje szybkości rozkładu odpadów na składowiskach. W przypadku BPOK składowanych w reaktorach laboratoryjnych, z i bez recyrkulacji, najwyższe wartości stałych szybkości ustalono dla metanogenezy. Potwierdza to stwierdzenie sformułowane w oparciu o zmiany stężeń zanieczyszczeń w odciekach z BPOK, że produkty powstające w fazie hydrolizy i acidogenezy substancji organicznych zawartych w odpadach po wstępnej stabilizacji tlenowej wykazują dużą podatność na metanizację (punkt 7.3.1.2).
- 5. Stałe szybkości rozkładu ZOK w reaktorach z recyrkulacją odcieków były wyższe niż w reaktorach bez recyrkulacji, mimo utrzymywania odpadów w stanie nasycenia wodą w wyniku codziennego dawkowania wody symulującej opady atmosferyczne (tabela 35). Z kolei stałe szybkości rozkładu BPOK w reaktorach z recyrkulacją były niższe niż w reaktorach bez recyrkulacji. Obserwowany wzrost szybkości przemian w reaktorach ze ZOK z recyrkulacją był wynikiem wprowadzania do odpadów dodatkowych ilości LKT w zawracanych odciekach. W przypadku BPOK stężenia LKT w recyrkulowanych odciekach były na tyle wysokie (rys. 23), że powodowy skutek odwrotny hamowanie przebiegu procesu.

Prognozowane emisje zanieczyszczeń z odpadów

- Prognozowane czasy trwania emisji zanieczyszczeń organicznych w odciekach i biogazie, wyznaczone w oparciu o stałe szybkości rozkładu, były wyraźnie niższe dla BPOK, z i bez recyrkulacji odcieków od ustalonych dla ZOK (tabela 39).
- 2. Weryfikacja wyznaczonej prognozy w oparciu o współczynniki migracji K_p i K_g (stosunek masy węgla organicznego wyemitowanego w odciekach (K_p) i biogazie

 (K_g) po 10 latach składowania) ustalone przez Belevi'ego i Bacinni'ego dla ZOK wykazała znaczące rozbieżności (tabela 38), pomimo to, wartości stężeń, które obliczono dla ZOK składowanych w skali technicznej, na podstawie wielkości wyemitowanego w odciekach ładunku węgla organicznego po 20 w niewielkim stopniu przekraczały, a po 100 latach ich składowania mieściły się w zakresach wartości przedstawionych w literaturze (tabela 16 a). Prognozowane stężenia obliczone dla ZOK stabilizowanych w warunkach laboratoryjnych były zdecydowanie niższe niż dla odpadów składowanych w warunkach polowych. W odpadach tych były wyższe wartości stałych szybkości rozkładu w oparciu, o które dokonano prognozy (rys. 53-55).

Wcześniejsze i powyższe stwierdzenia pozwalają na sformułowanie wniosku, że badania laboratoryjne (lizymetry) mogą być wykorzystywane do ustalenia najwyższych, możliwych stężeń organicznych w odciekach, które zależą głównie od aktywności mikroorganizmów (warunków środowiskowych) oraz prognozowania kierunków zmian ilości i składu chemicznego odcieków. Wyznaczenie rzeczywistych szybkości przemian zachodzących w złożu odpadów na składowiskach wymaga prowadzenia badań w wydzielonych częściach składowiska lub w reaktorach (lizymetrach) o bardzo dużej objętości. Są to jednak badania kosztowne i trudne do kontrolowania, co potwierdziły doświadczenia własne.

7.7. Wnioski końcowe

- Objętość odcieków powstających na składowisku odpadów po tlenowej stabilizacji przed składowaniem jest mniejsza od objętości odcieków powstających w przypadku składowania odpadów nieprzetworzonych.
- Recyrkulacja odcieków zarówno na składowiskach ZOK, jak i BPOK zwiększa ilość odcieków (netto) w pierwszych 2.5 latach składowania odpadów (pomijając parowanie wody podczas ich rozdeszczenia na powierzchni wierzchowiny odpadów).
- Badania potwierdziły, że tlenowa stabilizacja odpadów przed składowaniem skraca czas stabilizacji odpadów oraz zmniejsza ładunek zanieczyszczeń emitowany w odciekach i biogazie.
- 4. W badaniach potwierdzono doniesienia literaturowe o nie występowaniu fazy acidogenezy w BPOK składowanych w warunkach polowych oraz, że w tej fazie

stężenia zanieczyszczeń w odciekach i emitowane ładunki mają wartości zbliżone do typowych dla odcieków ze ZOK w fazie metanogennej.

- Wyniki badań wykazały, że recyrkulacja odcieków, zgodnie z oczekiwaniem, znacznie intensyfikowała przebieg procesów rozkładu odpadów powodując szybsze osiągnięcie fazy stabilnej fermentacji metanowej w złożu odpadów oraz wyższą produkcję biogazu.
- 6. Zastosowany model stochastyczny z bardzo dobrą dokładnością opisuje przebieg rozkładu ZOK i BPOK w złożu w skali technicznej (28% w odciekach, < 10% w biogazie) oraz w reaktorach (lizymetrach) ZOK, z i bez recyrkulacji odcieków, (około 1%). Natomiast znacznie gorzej, ilościowo opisuje przemiany zachodzące w lizymetrach BPOK, z recyrkulacją i bez, (23-35% w odciekach, 18-32% w biogazie).</p>
- 8. Wyznaczone wartości stałych szybkości hydrolizy ZOK i BPOK potwierdziły limitujący jej wpływ na rozkład biologiczny (najniższe wartości stałej hydrolizy), oraz dużą szybkość przemian w fazie acidogenezy ZOK (najwyższe wartości stałej acidogenezy), co wyjaśnia trudności w ustaleniu okresu jej trwania w oparciu o skład chemiczny odcieków.
- 9. Prognoza zmiany emisji zanieczyszczeń organicznych w okresie długoterminowym, wyznaczona w oparciu o wyliczone stałe szybkości rozkładu oraz równania opisujące przemiany odpadów na składowisku, potwierdziła doniesienia literaturowe, że proces MBP skraca czas emisji zanieczyszczeń emitowanych w odciekach i biogazie.
- 10. Na podstawie uzyskanych wyników stwierdzono, że 5 tygodniowa tlenowa stabilizacja odpadów w otwartych komorach kompostowych pozwala na zmniejszenie emisji zanieczyszczeń organicznych w odciekach (około 25%), jednakże, nie zapewnia pełnej stabilizacji odpadów wyrażającej się redukcją substancji organicznych usuwanych w odciekach i biogazie o około 80-90%.
- 11. Podczas prowadzonych doświadczeń wyłoniły się nowe kierunki badań, których podjęcie może być ważne dla dalszego rozwoju wiedzy w tym zakresie:
 - Wpływ stopnia (czasu) tlenowej stabilizacji odpadów przed składowaniem na ilość i skład odcieków i biogazu powstających na składowisku.
 - Wpływ intensywności dawkowania wody w badaniach lizymetrycznych (laboratoryjnych), mierzonej stosunkiem L/S, na szybkość przemian wyrażonych wskaźnikami stałych hydrolizy, acidogenezy i metanogenezy.

8. Literatura

- 1. Athonissen I.H., Introduction of a standard leaching test for co-disposal, The Second International Landfill Symposium, Sardynia 1989.
- Barlaz M.A., Ham R.K., Schaefer D.M., Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics, Critical Reviews Environmental Control, 1990: 557-584.
- 3. Barzaconi L., Lopez I., Anido C., Hydrolysis constant and VFA inhibition in acidogenic phase of MSW anaerobic degradation, Water Science Technology 1997: 479-484.
- 4. Belevi H., Baccini P., Water and Element Flukes from sanitary Landfills; [w:] International Landfill Symposium, Sardinia 1987: XXXIV-1 XXXIV-7.
- 5. Belevi H., Baccini P., Long-term behavior of munucipal solid waste landfills, Waste Managemant 1989: 43-56.
- 6. Bilitewski B, Härdtle G., Marek K., Podręcznik gospodarki odpadów, Wydawnictwo SiedelPrzewecki Spółka z o.o. 2003.
- Brinkmann U., Höring K., Heim M., Ehrig H.J., Effect of pre-composting on the longterm behavior of MSW landfills, [w:] The Fifth International Landfill Symposium, Sardinia 1995: 971-985.
- 8. Burton S.A.Q., Watson-Craik I.A., Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling, Waste Management 1998: 41-53.
- Canziani R., Cossu R., Landfill hydrology and leachate production. [w:] Christensen T.H., Cossu R., Stegman R., Sanitary Landfilling: Process, Technology and Environmental Impact, Academic Press, London 1989: 185-212.
- Capela I.F., Azeiteiro C., Arroja L., Duarte A.C., Effects of pre-treatment (composting) on the anaerobic digestion of primary sludges from a bleached kraft pulp mill. In: Mata-Alvarez J., Tilche A., Cecchi F., (Red.), Proceedings of the International symposium on anaerobic digestion of solid waste, Barcelona 1999: 113-120.
- 11. Chen P.H., Assessment of leachates from sanitary landfills: impact of age, rainfall, and treatment, Environment International 1996: 225-237.
- 12. Christensen T.H., Kjeldsen P., Basic biochemical Processes Environmental Impact, Academic Press 1989.
- 13. Chugh S., Clarke W., Pullammanappallil P., Rudolph V., Effect of recalculated leachate volume on MSW degradation, Waste Menagement 1998: 564-73.
- 14. Cook R.B., Schindler D.W., The biogeochemistry of sulfur in an experimentally acidified lake, Ecological Economics, 1983: 115-127.
- 15. Danhamer H., Jager J., Sickerwasseremissionen von mrechanisch-biologisch und thermisch vorbehandelten siedlungsabfallen, Entsorgung Praxis 1999: 31-35.
- 16. Demetracopoulos A.C., Sehayek L., Erdogan H., Modeling leachate production from municipal landfills, Journal of Environmental Engineering 1986: 849-866.
- 17. Ehring H.J., Untersuchungen zur Gasproduktion aus Hausmüll, Müll und Abfall, 1986: 179-183.
- El-Fadel M., Fidikakis A.N., Leckie J.O., Transport of gas and heat in sanitary landfills II, Model Aplication, Waste Management 1996 a: 537-551.
- 19. El-Fadel M., Fidikakis A.N., Leckie J.O. Transport of gas and heat in sanitary landfills III, Sensitivity analysis, Waste Management 1996 b: 537-551.

- 20. El-Fadel M., Fidikakis A.N., Leckie J.O., Environmental impacts of solid waste landfilling, Journal of Environmental Management 1997: 1-25.
- 21. El-Fadel M., Fidikakis A.N., Leckie J.O., Numerical modeling of generation and transport of gas and heat in sanitary landfills I, Model formulation, Waste Menagenent 1996: 483-504.
- 22. El-Mahrouki I.M.L., Watson-Craik I.A., The effects of nitrate and nitrate-supplemented leachate addition on methanogenesis from Municipal Solid Waste, Journal of Chemical Technology and Biotechnology 2004: 842-850.
- Fellner J., Hubert R., Doberl G., Brunner P.H., Hydraulic of MSW landfills and its implications for water flow modeling, [w:] The Ninth International Waste Management and Landfill Symposium, Sardinia 2003.
- 24. Fenn D.G., Hanley K.J. DeGeare T.V., Use of the Water Balance Method for Predicting Leachate Generation from Solid Waste Disposal Sites, Environmental protection Agency 1975.
- 25. Fourie A.B., Rosqvist N.H. Röhrs L.H., Potential impacts of preferential flowpathson the operation of the flushing bioreactor, [w:] The Eigth International Waste Management and Landfill Symposium Sardinia 2001: 195-202.
- 26. Fricke K., Thome-Kozmiensky K.J. Nuemüller G., Integrierte Abfallwirtschaft im ländlichen Raum, EF-Verlag für Energie- und Umwelttechnik GmbH, Berlin1993.
- 27. Fricke K., Santen H., Bidlingmaier W., Biotechnological process for solving waste management problems in less economical developed countries, [w:] The Eigh International Waste Management and Landfill Symposium, Sardinia 2001: 181-194.
- 28. Fricke K., Mümmich K., Ziehmann G., Turk T., Wallmann R., Auswirkungen der artikelverordnung auf die MBA und Deponietechnik, Bio und Restabfallbehandlung, 2001a.
- 29. Fungaroli A., Steiner R., Investigation of Sanitary Landfill behavior, Final Report, U.S. Environmental Protection Agency 1979.
- 30. Gaj K., Cybulska H., Modelowanie emisji biogazu ze składowisk odpadów komunalnych, Chemia i inżynieria ekologiczna 2002: 213-219.
- 31. Gracia de Cortazar A.L., Monzon T.I., Application of simulation models to the diagnosos of MSW landfills: an example, Waste Management 2007: 691-703
- 32. Guidance on monitoring MBT and Rother pre-treatment processes for the purposes of the landfill allowances schemes (England and Wales), Environmental Agency, 2005:1-37. http://www.environmental-agency.gov.uk.
- 33. Gurijala K.R., Suflita J.M., Environmental factors influencing methanogenesis form landfill refuse, Environmental Science and Technology 1993: 1176-81.
- Haarstrick A., Hempel D.C., Ostermann L., Ahrens H., Dinkler D., Modeling of the biodegradation of organic matter in municipal landfills, Waste Management 2001: 320-331.
- 35. He R., Shen D., Wang J., He Y., Zhu Y., Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation, Process Biochemistry 2005.
- 36. Heyer K., U., Stegmann R., The long-term behavior and residual emission potential of landfills, The Fifth international landfill symposium, Sardinia 1995: 149-161.
- 37. Hjelmar O., Johannessen L.M., Knox K I in., Composition and management of leachate from landfills within the UE. The Fifth International Landfill Symposium, Sardinia 1995: 243-262.

- Höring K., Kruempelbeck I., Ehrig H.J., Long term emission behavior of mechanicalbiological pre-treated municipal solid waste, [w]: Christensen T.H., Cossu R., Stegmann R., (Eds): Proc. Sardinia'99, 7, Int. Waste Management and Landfill Symposium, Cagliari 1999: 409–418.
- Imhoff P.T., Reinhart D.R., Englund M.E., Guerin R., Gawande N., Han B., Jonnalagadda S., Townsend T.G., Yazdani R., Review of state of art methods for measuring water in landfills, Waste Management 2007: 729-745.
- 40. Jang Y. S., Kim Y.W., Lee S. I., Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea, Waste Management 2002: 261-267.
- 41. Jędrczak A., Biologiczne przetwarzanie odpadów, Wydawnictwo Naukowe PWN 2007.
- 42. Jokela J.P., Vavilin V.A., Rintala J.A., Hydrolisis rate, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation, Bioresource Technology 2005: 501-508.
- 43. Kabbe G., Roos H.J., Wirtz A., Forge F., Schroder H.F., Dohmann M., Long-term emission behaviour of sanitary landfills, The Fifth International Landfill Symposium, Sardinia 1995: 163-172.
- 44. Kemmerling W., Wasserwirtschaftliche Aspekte der Abfallbehandlung, Wiener Mitteilungen Bd 20, TU Wien, 1975.
- 45. Kempa E.S., Jędrczak A., Nowak Z., Modelowanie, ochrona i odnowa środowiska zdegradowanego przez przemysł, Analiza ryzyka w składowaniu odpadów, Instytut Inżynierii Sanitarnej WSI, Zielona Góra 1990.
- 46. Kempa E.S., Gospodarka odpadami stałymi, Arkady 1983.
- 47. Kemt P., Water Balance Methodist use and Limitations, Wisconsin Department of Natural Resources, Bureau of Solid Waste Management 1982.
- 48. Kaczorek K., Zieleniewska A., Krzystek L., Ledakowicz S., Wpływ pogłębionego utleniania i recyrkulacji na biodegradację odcieków ze składowisk odpadów, Inżynieria chemiczna i procesowa 2004: 1041-1046.
- 49. Komilis D.P., Ham R.K., Stegmann R., The effect of landfill design and operation practices on waste degradation behavior: a review, Waste Management 2006: 20-26
- 50. Kroiss H., Wabnegg F., Das Problem der Sulfatreduktion bei der anaeroben Reinigung sulfatreicher Industrieabwasser, Wiener Mitteilungen, Bd 41, TU Wien 1982.
- Krümpelbeck I., Ehrig H.J., Long-term behaviour of municipal solid waste landfills in Germany, [w:] Christensen T. H., Cossu R., Stegmann R. (Red.), The Seventh International Waste Management and Landfill Symposium, Sardinia 1999: 27-36.
- 52. Kylefors K., Predictions of leachating from Municipal Solid Waste (MSW) and measures to improve leachate Management and Landfills, Divisin of Waste Science&Technology, 2002: 1–62.
- 53. Lay J.J., Li Y.Y., Noike T., Dynamiks of methanogenic activities in a landfill bioreactor treating the organic fraction of MSW, Water Science and Technology 1998: 177-184.
- 54. Lee J.J., Jung I.H., Lee W.B., Kim J.O., Computer and experimental simulations of the productions of methane gas from municipal solid waste, Water Science and Technology 1993: 225-234.
- 55. Lee K., Suk H., Choi S., Lee C.H., Chung S., Numerical evaluation of landfill stabilization by leachate circulation, Journal of Environmental 2001: 555-563.

- Ledakowicz S., Kaczorek K., Laboratory simulation of anaerobic digestion of municipal solid waste, [w:] Appropriate Environmental and Solid Waste Management and Technologies for Developing Countries, Istanbul 2002: 1139-46.
- 57. Leikam K., Stegmann R., Influence of mechanical-biological treatment of municipal waste on landfill behavior, Waste Management 1999: 424-429.
- 58. Leikam K., Heyer K.U., stegmann R., In situ stabilisation of completed landfillis and old sites, The Sixth International Landfill Symposium, Sardinia 1997: 511-518.
- 59. Leschbery R., Loll U., ATV-Handbuch, Klärschlamm, 4 Auflage1996.
- Lu J.C.S., Morrison R.D., Stearns R.J., Leachate Production and Management from Municipal Landfills: Summary and Assessment, [w:] Proceedings of the Seventh Annual research Symposium, Land Disposal, Municipal Solid East, U.S. Environmental Protection Agency Ohio 1981.
- 61. Malina J.F., Pohland F.D., Design of anaerobic processes for the treatment of industrial and municipal wastes, Technomic Publishing Company 1992.
- 62. Manna L., Zanneti M.C., Genon G., Modeling biogas production at landfill site, Resources Conservation and Recycling 1999: 1-14.
- 63. Marcinkowski...
- 64. McBean E.A, Rovers F.A., Farquhar G.J., Solid waste landfill engineering and design, Prentice Hall PTR, New Jersey 1995.
- 65. McCreanor P.T., Reinhart D.R., Hydrodynamic modeling of leachate recirculating Pergamon 1996.
- 66. Meraz R.L., A., M., Vidales, A. D., A fractal-like kinetics equation to calculate landfill methane production, Fuel 2004: 73-80.
- 67. Morris J.W.F., Vasuki N.C., Baker J.A., Pendleton C.H., Findings from long-term monitoring studies at MSW facilities with leachate recirculation, Waste Management 2003: 653-666.
- 68. Mostafa A.W., Walied Z., Neeraj G., Effect of leachate recirculation on municipal solid waste biodegradation, Journal of Canada Water Quality Research 1999: 267-280.
- 69. Mostbauer P., Heiss-Ziegler C., Modelling of nitrogen release from nitrogen waste, Waste Management 2005: 361-368.
- 70. Musmeci L., Organic fraction of municipal solid waste (OFMSW): extent of biodegradation, Waste Management 1998: 103-107.
- 71. Münnich K., Mahler C.F., Fricke K., Pilot project of mechanical-biological treatment of waste in Brazil, Waste Management 2005: 150-157.
- 72. Novella P.H., Ekama G.A., Blight G.E., Effects of liquid replacement strategies on waste stabilization at pilot-scale, The Sixth Landfill Symposium, Sardinia 1997: 387-396.
- 73. Nopharatana A., Pullammanappallil P.C., Clarke W. P., Kinetics and dynamic modeling of batch anaerobic digestion of MSW in a stirred reactor, Waste Management 2007: 595-603.
- 74. Oksendal B., Stochastic defferential Equations: An Introduction with Aplications. Spinger 2000.
- 75. Onay T.T., Pohland F.G., In situ nitrogen management in controlled bioreactor landfills, Water Research 1998: 1383-1392.
- Oonk H., Woelders H., Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster, Waste Management 1999: 535-542.

- 77. Ozkaya B., Demir A., Sinan Bilgili M., Matchematical simulation and long-term monitoring of leachate components from two different landfill cells, Jurnal of Hazardous Materials 2006: 32-39.
- Öztürk I., Arikan O., Demir I., Demir A., Inane B., Kanat G., Yilmaz S., Solid Waste Characterization in Instanbul, Instanbul Technical University Report Department of Environmental Engineering 1997: 4-29.
- 79. Peyton R.L., Schroeder P.R., Field Verification of HELP Model for Landfills, Journal of Environmental Engineering 1988: 247-269.
- 80. Pohland F.G., Ghosh S., Developments in anaerobic stabilization of organic wastes-the two phase concept, Environmental Letters 1971: 255-266.
- 81. Pohland F.G., Kim J.C., In situ anaerobic treatment of leachate in landfill bioreactors, Water Sciene and Technology 1999: 203-210.
- 82. Pohland F.G., Landfill bioreactors: fundamentals and practice, [w:] Water Qualty International 1996: 18-22.
- 83. Price G.A., Barlaz M.A., Hater G.R., Nitrogen management in bioreactor landfills. Waste Management 2003: 675-688.
- Raninger B, Pilz G., Gheser D., Optimisation of mechanical-biological treatment of waste to achieve Austrian landfill requirements, [w:] The Seventh International Waste Mangement and Landfill Symposium, Sardinia 1999: 387-394.
- 85. Reinhart D. R., Al.-Yousfi A.B., The impact of leachate recirculation on municipal solid waste landfill operating characteristics, Waste Manage Reserch 1996: 337-46.
- 86. Reinhart D.R., Townsend T.G., Landfill bioreactor design and operation, Lewis Publishers, Boca Raton 1998.
- 87. Reinhart D.R., Full-scale experience with leachate recirculating landfills: case studies, Waste Management 1996: 347-365.
- Robinson H.D., Knox K., Bone B.D., Picken A., Leachate quality from landfilled MBT waste, Waste Management 2005: 383-391.
- 89. Robinson H.D., Knox K., Bone B.D., Improved definition of leachate source term from landfills Phase 1: review of data from European landfills, Science Report Environment Agency September 2004 (http://www.environment-agency.gov.uk).
- 90. Rodrigues I., Castrillon P., Maranon E., Sastre H., Biomethanization of municipal solid waste in a pilot plant, Water Reserch 2000: 447-454.
- 91. Sadecka Z., Toksyczność i biodegradacja insektycydów w procesie fermentacji metanowej osadów ściekowych, Wydawnictwo Naukowo-Techniczne UZ, Zielona Góra 2002.
- 92. Šan I., Turgut T., Onay P., Impact of various leachate recirculation regimes on municipal solid waste degradation, Journal of Hazardous Materials 2001: 259-271
- 93. Sanphoti N., Towprayoon S., Chaiprasert P., Nopharatana A., The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated landfill, Journal of Environmental Management 2006: 27-35.
- 94. Schön M., Verfahren zur Vergärung organischer Rückstände in der Abfallwirtschaft, Verlag E. Schmidt GmbH&Co., Berlin 1994.
- Schroeder P.R., Morgan J.M., Wolski T.M., Gibson A.C., The Hydrologic Evaluation of Landfill Performance Model Using Physical Models, User's Guide for Version 1, U.S. Environmental Protection Agency 1983.

- 96. Spendlin H.H., Untersuchungen zur frühzeitigen Initiierung der Methanbildung bei festen Abfallstofffen (Investigations regarding the early initiation of methane production of MSW), [w:] Hamburger Berichte, Bd 4, Abfallwirtschaft, Technische Universität Hamburg-Harburg; Stegmann, R., (Red.), Eigenverlag 1991.
- 97. Sponza D.T., Ağdağ O.N., 2004. Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors, Process Biochemistry 2004: 2157-2165.
- Stegman R., Ehrig H.J., Leachate production and quality results of landfill processes and operation, The Second International Landfill Symposium, Sardinia 1989: XXVIII-1 - XXVIII-16.
- Stegman R., Vorteile der Restmüll Aufbereitung zur Senkung der Gasemissionen von Deponien, [w:] Aufbereitung fester Siedlungsabfälle vor der Deponierung, Zentrum für Abfallforschung, Technical University of Braunschweig, 1991: 341-359.
- 100. Srtaub W.A., Lynch D.R., Models of landfill leachating:moisture movement and inorganic strength, Journal of Environmental Engineering 1982: 231-250.
- 101. Szpadt R., Jędrczak A., Przygotowanie wytycznych w zakresie wymagań dla procesów kompostowania, fermentacji i mechaniczno-biologicznego przekształcania odpadów. Raport na zamówienie Ministra Środowiska. Kamieniec – Zielona Góra 2007.
- 102. zyc J., Odcieki ze składowisk odpadów komunalnych, Monografia, Instytut Ochrony Środowiska, Warszawa 2003.
- 103. Tatsi A.A., Zouboulis A.I., A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a mediterranean climate (Thessaloniki, Greece), Advances in Environmental Research 2002: 207-219.
- 104. Thornthwaite C.W., Mather I.R., Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance, Publications in Climatology 1957.
- 105. Tuttle J.H., Dugan P.R., Randles C.J., Microbiological sulfate reduction and its potential utility as a water pollution abatement procedure, Appled Microbiology 1969: 297-302.
- 106. Uchwała Rady Ministrów nr 233, z dnia 29 października 2006 r. w sprawie krajowego planu gospodarki odpadami (M.P. Nr 90, poz. 947).
- 107. Warith M., Bioreactor landfills: experimental and field results, Waste Management 2002: 7-17.
- 108. Warith A., Zekry W., Gawri N., Effect of leachate recirculation on municipal solid waste biodegradation, Journal of Canada Water Quality Research 1999: 267-280.
- 109. Wens P., Vercauteren T., De Windt W., Verstraete W., Factors inhibiting anaerobic degradation in a landfill, The Eighth International Waste management and Landfill Symposium, Sardinia 2001.
- 110. Vavilin V.A., Rytov S.V., Lokshina L.Y., A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter, Bioresource Technology 1996: 229-237.
- 111. Vavilin V.A., Fernandez B., Palatsi J., Flotats X., Hydrolysis kinetics in anaerobic degradation of organic material: An overview, Waste Management 2008: 939-951.
- 112. Yalcin F., Demirer G. N., Performance evaluation of landfills with the HELP (Hydrologic Evaluation of Landfill Performance) model: Izmit case study, Environmental Geology 2002: 793–799.
- 113. Youcai Z., Jianggying L., Renhua H., Guowei G., Long term monitoring and prediction for leachate concentrations in Shanghai refuse landfill, Water, Air and Soil Pollution, 2000: 281-297.

- 114. Young A., Mathematical modeling of the metanogenic ecosystem, [w]: Eric, Senior (Ed.), Microbiology of landfill sites, Lewis Publisher 1995.
- 115. Young A., Mathematical modeling of landfill degradation, Journal of Chemical Technology and Biotechnology 1989 a: 189-208.
- 116. Young A., Mathematical modeling and gas extraction, Journal of Environmental Engineering 1989 b: 73-87.
- 117. Yuen S.T.S., Wang Q.J., Styles J.R., McMahon T.A., Water balance comparison between a dry and wet landfill a full-scale experiment, Journal of Technology 2001: 29-48.
- 118. Ye R.W., Averill B.A., Tiedje J.M., Denitryfication-production and consumption of nitric-oxide, Applied Microbiology 1994: 1053-1058.
- 119. Zacharof A.I., Butler A.P., Application of Stochastic Leachate and Biogas Model to the Brogborough Test cell experiment data incorporating data uncertainty, [w:] The Eighth International Waste Management and Landfill Symposium, Sardinia 2001: 119-128.
- 120. Zacharof A.I., Butler A.P., Stochastic modeling of landfill processes incorporating waste heterogeneity and data uncertainty, Waste Management 2004: 241-250.
- 121. Zeschmar-Lahl B., Jager J., Ketelsen K., Mechanisch-Biologische Abfallbehandlung in Europa, Blackwell Wissenschafts-Verlag GmbH, Berlin 2000.
- 122. Zumft W.G., Cell biology and molecular basis of denitrification, Microbiology and Molecular Biology Reviews 1997: 533-616.
- 123. Żygadło M., Gospodarka odpadami komunalnymi, Skrypt, Wydawnictwo Politechniki Świętokrzyskiej, Kielce, 2002.

9. Spis rysunków

Rys. 1. Składniki bilansu wodnego w zorganizowanych składowiskach	22 24
n wana doświadczeń	27
Rys. 5. Steanie miesięczne objętości odcieków dla lokalizacji na terenie Folski	27
Kys. 4. Wierkosc opadów (mm/d) i rosci odcieków (w mm/d i 78 opadów) dla kirkunasta składowisk, o roznym wielko	20
	30
Rys. 5. Ogoiny schemal process MBP	31
Kys. 6. Wartosci ChZI, BZI 5 oraz stężenia azotu ogoinego w oaciekach z biojrakcji nieprzetworzonej (B) i po	
kompostowaniu (B po MBP) - testy laboratoryjne (iloraz; objętości odciekow/masy odpadów, w 400 dniu	~ (
wyniost 1.6/1, a /00 dniu - 2.6/1)	34
Rys. 7. Redukcja ChZT w przekompostowanych odpadach komunalnych stabilizowanych tlenowo przez okres	
100 dni w zależności od czasu intensywnego napowietrzania	35
Rys. 8. Produkcja biogazu z odpadów nieprzetworzonych i przetworzonych biologicznie:	36
Rys. 9. Wskaźniki masowe emisji zanieczyszczających w odciekach z odpadów w różnym stopniu przetworzony	ch
w zależności od wartości ilorazu objętość odcieków/sucha masa odpadów. Strzałki pokazują początek	
wytwarzania gazu	38
Rys. 10. Formy węgla organicznego ulęgającego biodegradacji w kolejnych fazach rozkładu substancji]	49
Rys. 11. Funkcja wzrostu i rozkładu $A=0.01$ kg/rok ² , $k=0.1$ rok ⁻¹	52
Rys. 12. Przebieg emisji składników odpadów do odcieków i powietrza w funkcji czasu	58
<i>R</i>vs. 13. Zmiany steżeń chlorków w odciekach oraz krzywe sumowe emitowanych ładunków w funkcii wieku	
pełnej skali składowisk (powierzchnia 1 m ² . wysokość 20 m)	59
Rvs. 14 Zmianv stežeń azotu ogólnego w odciekach oraz krzywe sumowe emitowanych ładunków w funkcii	•
wieku nelnej skali składowisk (nowierzchnia 1 m ² wysokość 20 m)	50
Rus 15 Schemat hioreaktora	62
Dys. 16. Schemat technologiesmy kompostowni i stanowiska nomianowago	65
Rys. 10. Schemal lechnologiczny komposiowni i słanowiska pomiarowego	05
Kys. 17. Sreanie tygoaniowe objętości woay dawkowanej do reaktorów i odcieków z odpadów	71
nieprzetworzonych (reaktor S) i przetworzonych biologicznie (reaktor P)	/1
Rys. 18. Srednie tygodniowe objętości dodawanej wody, wody i recyrkulatu oraz odciekow z odpadow	
nieprzetworzonych (reaktor SR) i przetworzonych biologicznie (reaktor PR)	71
Rys. 19. Krzywe sumowe objętości dodawanej wody, wody i recyrkulatu oraz odcieków powstających w	
reaktorach odpadów nieprzetworzonych (reaktory S i SR) i przetworzonych biologicznie (reaktory P i PR)	72
Rys. 20. Zmiany ChZT odcieków z odpadów nieprzetworzonych biologicznie i po biologicznym przetworzeniu	73
Rys. 21. Zmiany stężeń OWO w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym	
przetworzeniu	74
<i>Rys. 22.</i> Zmiany wartości BZT ₅ w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym	
przetworzeniu	75
Rys. 23. Zmiany stężeń LKT w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym	
przetworzeniu	76
Rvs. 24. Zmiany steżeń azotu ogólnego w odciekach z odpadów nieprzetworzonych biologicznie i po	
hiologicznym przetworzeniu	77
Rvs 25 Zmiany steżeń azotu amonowego w odciekach z odnadów nieprzetworzonych biologicznie i po	, ,
high and high and high and high and high a subsection of the subse	78
Pus 26 Zmiany stożeń chlorków w odciekach z odnadów nieprzetworzonych hiologicznie i no hiologicznym	/0
Rys. 20. Zmiuny siężen chiorkow w ouciekuch z oupudów meprzerworzonych biologicznie i po biologicznym	70
przerworzeniu	/9
Kys. 27. Zmiuny siężen siarczanów w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym wieszkodliwieniu	ំ
	80
Rys. 28. Zmiany pH w odciekach z odpadow nieprzetworzonych biologicznie i po biologicznym przetworzeniu	82
Rys. 29. Zmiany potencjału redoks w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym	
przetworzeniu	83
<i>Rys. 30.</i> Zmiany zasadowości w odciekach z odpadów nieprzetworzonych biologicznie i po biologicznym	~
przetworzeniu	84
<i>Rys. 31.</i> Dobowa produkcja metanu w reaktorach S, SR, P i PR	85
Rys. 32. Zawartość metanu w biogazie z reaktorów S, SR, P i PR	86
Rys. 33. Całkowita produkcja metanu w reaktorach S, SR, P i PR	87
Rys. 34. Średnie miesięczne objętości opadów atmosferycznych i odcieków określone dla zasobni odpadów	
nieprzetworzonych i przetworzonych biologicznie	88
<i>Rys.</i> 35. Krzywe sumowe objętości opadów atmosferycznych oraz ujmowanych odcieków dla zasobni odpadów	
--	
<i>Rys. 36.</i> Zmiany wartości ChZT w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym	
przetworzeniu	
Rys. 37. Zmiany stężeń OWO w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym	
przetworzeniu	
<i>Rys.</i> 38. Zmiany wartości BZT ₅ w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym	
przetworzeniu	
Rys. 39. Zmiany stężeń LKT w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym	
przetworzeniu	
Rys. 40. Zmiany stężeń azotu ogólnego w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym	
przetworzeniu	
Rys. 41 . Zmiany stężeń azotu amonowego w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu	
<i>Rys.</i> 42. Zmiany stężeń chlorków w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym	
przetworzeniu	
<i>Rys.</i> 43. Zmiany stężeń siarczanów w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym	
przetworzeniu	
Rys. 44. Zmiany pH w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu 96	
<i>Rys.</i> 45. Zmiany potencjału redoks w odciekach z zasobni odpadów nieprzetworzonych i po biologicznym	
przetworzeniu	
Rys. 46. Zmiany zasadowości odcieków z zasobni odpadów nieprzetworzonych i po biologicznym przetworzeniu	
<i>Rys.</i> 47. Krzywe sumowe ładunków zanieczyszczeń usuniętych w odciekach z reaktorów S i P	
Rys. 48. Krzywe sumowe ładunków zanieczyszczeń usuniętych w odciekach z reaktorów SR i PR 138	
Rys. 49. Krzywe sumowe całkowitych ładunków zanieczyszczeń usuniętych z zasobni S i P 147	
Rys. 50. Symulowane i doświadczalne krzywe wyznaczone dla ZOK składowanych w warunkach laboratoryjnych	
w reaktorach bez (reaktor S–ZOK) i z recyrkulacją (reaktor SR-ZOK-R): a) strat masy wegla organicznego, b)	
masy węgla emitowanego w odciekach (faza hydrolizy), c) masy węgla emitowanego w biogazie, d) masy węgla	
emitowanego w metanie (faza metanogenezy)	
Rys. 51. Symulowane i doświadczalne krzywe wyznaczone dla BPOK składowanych w warunkach	
laboratoryjnych w reaktorach bez (reaktor P – BPOK) i z recyrkulacją (reaktor PR - BPOK-R): a) strat masy	
wegla organicznego, b) masy węgla emitowanego w odciekach (faza hydrolizy), c) masy węgla emitowanego w	
biogazie, d) masy wegla emitowanego w metanie (faza metanogenezy)	
Rys. 52. Symulowane i doświadczalne krzywe wyznaczone dla ZOK i BPOK składowanych w warunkach	
technicznych: a) strat masy wegla organicznego, b) masy węgla emitowanego w odciekach (faza hydrolizy), c)	
masy węgla emitowanego w biogazie, d) masy węgla emitowanego w metanie (faza metanogenezy) 157	
Rys. 53. Prognostyczne krzywe dla reaktorach bez recyrkulacji (S i P): a) strat masy węgla organicznego, b)	
steżenia OWO w odciekach, c) produkcji biogazu	
Rys. 54 . Prognostyczne krzywe dla reaktorach z recyrkulacją (SR i PR): a) strat masy węgla organicznego, b)	
steżenia OWO w odciekach, c) produkcji biogazu	
Rys. 55. Prognostyczne krzywe dla zasobni S i P: a) strat masy węgla organicznego, b) steżenia OWO w	
odciekach, c) produkcji biogazu	

10. Spis tabel

Tabela 1. Gestości i pojemności wodne odpadów [29]	. 24
Tabela 2. Parametry wymagane do obliczania ilości odcieków z wykorzystaniem procedur opartych na	
modelach WBM i HELP	. 28
Tabela 3. Koszty inwestycyine i eksploatacyine ponoszone podczas tlenowei i beztlenowei stabilizacii odpadó	w
[27]	. 31
Tabela 4. Wybrane wskaźniki jakości odcieków z nieprzetworzonych odpadów komunalnych ze składowisk	
niemieckich [51]	. 32
Tabela 5. Skład chemiczny odcieków ze składowiska odpadów po MBP w Lüneburgu, z reaktorów	
labolatorvinych oraz ze zmieszanych odpadów komunalnych w róznych fazach stabilizacji[89]	. 33
Tabela 6. Uśrednione całkowite czasy trwania stabilizacji tlenowej (tygodnie) dla osiagniecja określonych	
stopni rozkładu (zmniejszenia zawartości) substancji organicznej [28]	. 34
Tabela 7. Ładunki zanieczyszczeń usuwane w gazie składowiskowym i odciekach ze ZOK i BPOK [38]	. 35
Tabela 8. Steżenia zanieczyszczeń w odciekach z biofrakcji nieprzetworzonej i po kompostowaniu [15]	. 37
Tabela 9. Skład chemiczny odcieków z dużych składowisk BPOK [88]	. 39
Tabela 10. Skład odcieków ze złoża nieprzetworzonej biofrakcji z recyrkulacją i bez recyrkulacji odcieków [74]	6]
	. 41
I abela 11. Skład chemiczny BPOK stabilizowanych tlenowo [84] Tabela 12. Skład chemiczny BPOK stabilizowanych tlenowo [84]	. 42
Tabela 12. Skład odcieków z BPOK stabilizowanych w dwóch wariantach technologicznych, z recyrkulacją i u	bez
recyrkulacji [84]	. 43
Tabela 13. Stałe biokinetyczne używane jako wytyczne do propozycji modelowania [18]	. 51
Tabela 14. Stałe szybkości hydrolizy w różnych fazach procesu fermentacji [110]	. 55
Tabela 15. Stałe szybkości hydrolizy wybranych odpadów [49]	. 56
Tabela 16 a,b. Czasy wymywania zanieczyszczeń z odpadów [52]	. 57
Tabela 17. Współczynniki przenoszenia zanieczyszczeń z odpadów komunalnych do gazu i odcieków, po 10	
latach ich składowania [5]	. 58
Tabela 18. Właściwości i skład morfologiczny badanych odpadów	. 69
Tabela 19. Teoretyczne masy węgla usunietego w biogazie	117
Tabela 20. Całkowite objętości odcieków, dawkowanej wody oraz odcieków recyrkulowanych w czasie trwani	ia
badan	118
I dbela 21. Sreanie miesięczne objęlości odcieków oraz wariości liorazów objęlości odcieków i dodawanej wo dla wasterních S. S.B. D. D.D.	<i>Jay</i>
ula reaktorow S, SK, P, PK	119
Tubelu 22. Cutkowie objętości opudow ulmosjerycznych i odcieków powsiających w zasobniach 5 i 1 , zakres wartości oraz śradnie dobowa obiatości odcieków i śradnie miesieczne wartości stosunków obietości odcieków	<i>sy</i>
wariości oraz sreanie abdowe objętości bacieków i sreanie miesięczne wariości siosanków objętości bacieków do objętości opądów atmosformaziwach	N 171
ao objętości opadow almosjerycznych	121
Tubelu 23. Ejektywnosc produkcji melanu z oupadów meprzetworzonych i po biologicznym przetworzeniu stabilizowanych z i bez recyrkulacji odciaków	172
Subilizowanych z i bez recyrkulacji baciekow	125
Tubela 24. Sreame czasy ir wania jaż 1, 11, 111 ala rożnych kryteriów ich wyznaczania oraz zakresy i sreame wartości wskaźników w czasia ich trwania	126
Tabala 25. Śradnie cząsy trygnia faz III i III uyznaczone w oparcju o różne kryteria	120
Tubela 25. Srednie czasy ir wania jaż 1, 11 i 111 wyznaczone w oparciu o rożne w yteria	12/
Tuben 20. Steame clasy if wanta oktesow 1, 11 i 111 wylnaclone w oparcia o kryteria produkcji i skada ologa	12 <i>u</i> 128
Tabela 27. Średnie czasy trwania faz I, II i III	129
Tabela 28. Zakresy i średnie stężenia zanieczyszczeń w odciekach z reaktorów S i SR w wyróżnionych fazach	
rozkładu odpadów	130
Tabela 29. Zakresy i średnie stężenia zanieczyszczeń w odciekach z reaktorów P i PR w wyróżnionych fazach	!
rozkładu odpadów	131
Tabela 30. Szybkość wymywania zanieczyszczeń z odpadów w reaktorach S, SR, P i PR w wyróżnionych fazac	ch
przemian oraz w całym okresie badań	136
Tabela 31. Ładunki zanieczyszczeń usunięte w odciekach z reaktorów S, SR, P i PR w wyróżnionych fazach	
przemian i całym okresie badań oraz ich ilorazy dla reaktorów S/P i SR /PR	139
Tabela 32. Zakresy i średnie stężenia zanieczyszczeń usunięte w odciekach z zasobni ZOK i BPOK w	
wyróżnionych fazach rozkładu	144
Tabela 33. Szybkości wymywania zanieczyszczeń z zasobni ZOK i BPOK	146
Tabela 34. Ładunki zanieczyszczeń usunięte w odciekach ze ZOK i BPOK w wyróżnionych fazach i w całym	
okresie badań w skali technicznej	148
Tabela 35. Stałe szybkości hydrolizy, acidogenezy i metanogenezy odpadów, badanych w skali laboratoryjnej	ii
technicznej, obliczone na podstawie zmodyfikowanego modelu Zacharof'a	149

Tabela 36. Prognozowane masy wegla biodegradowalnego usuwanego z odpadów dla 50 letniego okresu	1.00
składowania – warunki laboratoryjne	. 162
Tabela 37. Prognozowane masy węgla biodegradowalnego usuwanego z odpadów dla 250 letniego okresu składowania – warunki techniczne	. 163
Tabela 38. Wartości współczynnika przeniesienia zanieczyszczeń z BPOK i ze ZOK usuniętych w odciekach	K_{p}
i biogazie K_g	164
Tabela 39. Czasy wyczerpania emisji zanieczyszczeń z ZOK i BPOK	. 165

11. Spis załączników

Załącznik 1. Objętości opadów atmosferycznych wprowadzonych do zasobni S i P oraz objętości powstających odcieków – skala techniczna
Zalacznik 2 Objętości wody wprowadzonej do reaktorów S SR P i PR oraz objętości powstających odcięków -
skala laboratorvina
Załacznik 3 Właściwości fizyczno-chemiczne odcieków z zasobni S w kolejnych dniach pomiarów – skala
techniczna 198
Załacznik 4 Ładunki zanieczyszczeń usuwane w odciekach z zasobni S w kolejnych dniach pomiarów – skala
techniczna
Załacznik 5. Właściwości fizyczno-chemiczne odcieków z zasobni P w koleinych dniach pomiarów– skala
techniczna
Załacznik 6. Ładunki zanieczyszczeń usuwane w odciekach z zasobni P w kolejnych dniach pomiarów – skala
techniczna 204
Załacznik 7. Produkcja metanu w $m^3/(Mg d)$ i jego udział w biogazie w % (v/v) - skala techniczna 200
Załacznik 8. Właściwości fizyczno-chemiczne odcieków z reaktora S w koleinych dniach pomiarów – skala
laboratorvina
Załacznik 9. Ładunki zanieczyszczeń usuwane w odciekach z reaktora S w koleinych dniach pomiarów – skala
laboratotvina
Załącznik 10. Właściwości fizyczno-chemiczne odcieków z reaktora SR w kolejnych dniach pomiarów – skala
laboratoryjna
Załącznik 11. Ładunki zanieczyszczeń usuwane w odciekach z reaktora SR w kolejnych dniach pomiarów – skala
laboratotyjna
Załącznik 12. Właściwości fizyczno-chemiczne odcieków z reaktora P w kolejnych dniach pomiarów – skala
laboratoryjna
Załącznik 13. Ładunki zanieczyszczeń usuwane w odciekach z reaktora P w kolejnych dniach pomiarów – skala
laboratotyjna
Załącznik 14. Właściwości fizyczno-chemiczne odcieków z reaktora PR w kolejnych dniach pomiarów – skala
laboratoryjna
Załącznik 15. Ładunki zanieczyszczeń usuwane w odciekach z reaktora PR w kolejnych dniach pomiarów –
skala laboratotyjna
Załącznik 16. Produkcja metanu w reaktorach S, SR, P i PR, w dm^3/d , i jego udział w biogazie w % (v/v) - skala
laboratoryjna
Załącznik 17. Obliczenia numeryczne stałych szybkości rozkładu hydrolizy, acidogenezy i metanogenezy oraz
prognozowanych mas węgla wyemitowanego z odpadów w odciekach i biogazie– reaktor ZOK 220

Załączniki

Rok badań													2003												
Data (dzień.miesiac)	1.06	2.06	3.06	4.06	5.06	6.06	7.06	8.06	9.06	10.06	11.06	12.06	13.06	14.06	15.06	16.06	17.06	18.06	19.06	20.06	21.06	22.06	23.06	24.06	25.06
Kolejny dzień pomiaru	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Opady atmosferyczne, m3/d	0	0	0	0	0	2,3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,3	0,21	0
Odcieki, m3/d - Zasobnia S	1,11	1,11	0,05	0,01	0,01	0,02	0,01	0,01	0,32	1,58	0,01	0,01	0,13	0,05	0,01	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Odcieki, m3/d - Zasobnia P	0	0	0	0	0	0	0	0	0	2,06	0,01	0,01	0,06	0,02	0,02	0,02	0,06	0,08	0,01	0,01	0,01	0,01	0,02	0,01	0,01
Rok badań													2003												
Data (dzień.miesiac)	26.06	27.06	28.06	29.06	30.06	1.07	2.07	3.07	4.07	5.07	607	7.07	8.07	9.07	10.07	11.07	12.07	13.07	14.07	15.07	16.07	17.07	18.07	19.07	20.07
Kolejny dzień pomiaru	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Opady atmosferyczne, m3/d	0	0	0	0	0	0,21	0	0	0	0	0	0,42	0	0	0,21	0,84	0,21	0	0	0	0	0	0,42	0,21	0
Odcieki, m3/d - Zasobnia S	0	0	0	0	0	0,01	0,01	0,08	0,06	0,13	0,13	0,24	0,03	0,06	0,06	0,31	0,05	0,08	0,07	0,14	0,01	0,9	0,86	0,15	0,11
Odcieki, m3/d - Zasobnia P	0,02	0	0	0,01	0	0	0,01	0,16	0,02	0,03	0,03	0,01	0	0,01	0	0,04	0,01	0,02	0,01	0,01	0	0,1	0,5	0,06	0,05
Rok badań													2003												
Data (dzień.miesiac)	21.07	22.07	23.07	24.07	25.07	26.07	27.07	28.07	29.07	30.07	31.07	1.08	2.08	3.08	4.08	5.08	6.08	7.08	8.08	9.08	10.08	11.08	12.08	13.08	14.08
Kolejny dzień pomiaru	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Opady atmosferyczne, m3/d	0	0	2,51	0	0	0	0	1,04	2,92	0	0	1,25	1,04	0	1,04	0	0	0	0	0	0	0	0	0	0
Odcieki, m3/d - Zasobnia S	0,19	0,01	1,19	1,27	0,09	0,12	0,16	0,09	0,58	0,11	0,07	0,6	0,52	0,49	0,7	0,09	0,07	0,06	0,06	0,03	0,03	0,03	0,01	0,01	0,02
Odcieki, m3/d - Zasobnia P	0,06	0	0,48	0,1	0,01	0,15	0,18	0,18	0,28	0,07	0,07	0,05	0,05	0,05	0,06	0,05	0,04	0,07	0,13	0,03	0,04	0,04	0,03	0,03	0,01
Rok badań													2003												
Data (dzień.miesiac)	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Kolejny dzień pomiaru	15.08	16.08	17.08	18.08	19.08	20.08	21.08	22.08	23.08	24.08	25.08	26.08	27.08	28.08	29.08	30.08	31.08	1.09	2.09	3.09	4.09	5.09	6.09	7.09	8.09
Opady atmosferyczne, m3/d	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Odcieki, m3/d - Zasobnia S	0,02	0,01	0,02	0,03	0,03	0,07	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Odcieki, m3/d - Zasobnia P	0,01	0,01	0,01	0,01	0	0,07	0,01	0,01	0	0	0	0,01	0	0	0,01	0	0	0	0	0	0	0,01	0	0	0
Rok badań													2003												
Data (dzień.miesiac)	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125
Kolejny dzień pomiaru	9.09	10.09	11.09	12.09	13.09	14.09	15.09	16.09	17.09	18.09	19.09	20.09	21.09	22.09	23.09	24.09	25.09	26.09	27.09	28.09	29.09	30.09	1.10	2.10	3.10
Opady atmosferyczne, m3/d	0	0	3,34	2,3	0,42	0	0	0	0	0	0	0	0	0	0	0,63	0	0	0	0	0	0	0,29	0,17	0
Odcieki, m3/d - Zasobnia S	0,01	0,35	2,57	0,29	0,02	0,01	0,19	0,05	0,05	0,09	0	0,03	0,04	0,02	0,05	0,14	0,06	0,03	0,01	0,05	0,02	0,02	0,04	0	0,02
Odcieki, m3/d - Zasobnia P	0,02	0,08	0,29	0,17	0	0	0,05	0,01	0,03	0,05	0,03	0,03	0,02	0,01	0,02	0,04	0	0,01	0,02	0,01	0,01	0,01	0,01	0	0,01

Załącznik 1. Objętości opadów atmosferycznych wprowadzonych do zasobni S i P oraz objętości powstających odcieków – skala techniczna

Rok badań													2003												
Data (dzień.miesiac)	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Kolejny dzień pomiaru	4.10	5.10	6.10	7.10	8.10	9.10	10.10	11.10	12.10	13.10	14.10	15.10	16.10	17.10	18.10	19.10	20.10	21.10	22.10	23.10	24.10	25.10	26.10	27.10	28.10
Opady atmosferyczne, m3/d	0,38	0,21	0,04	0,92	2,47	0,33	0,27	0,04	0	0	0,04	0	0,21	0	0	0	0	0,61	0	0	0	0,25	0,96	0,21	0
Odcieki, m3/d - Zasobnia S	0	0,06	0,06	0,04	0,07	1,02	0,3	0,31	0,12	0,23	0,06	0,04	0,04	0,03	0,05	0,03	0,05	0,03	0,01	0,05	0,03	0,05	0,09	0,07	0,07
Odcieki, m3/d - Zasobnia P	0,01	0,01	0,02	0,01	0,02	0,47	0,02	0,1	0,15	0,15	0,03	0,01	0,02	0,02	0,02	0,01	0,02	0,01	0,01	0,02	0,01	0,01	0,03	0,01	0,02
Rok badań													2003												
Data (dzień.miesiac)	29.10	30.10	31.10	1.11	2.11	3.11	4.11	5.11	6.11	7.11	8.11	9.11	10.11	11.11	12.11	13.11	14.11	15.11	16.11	17.11	18.11	19.11	20.11	21.11	22.11
Kolejny dzień pomiaru	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
Opady atmosferyczne, m3/d	0	0	0	0,06	0	0,04	0	0,02	0	0,04	0	0	0	0	0	0	0	0	0,98	0,84	0,38	0	0	0	0
Odcieki, m3/d - Zasobnia S	0,01	0,01	0,01	0,07	0,01	0,06	0,04	0,03	0,04	0,02	0,02	0,05	0	0,04	0,01	0,02	0,01	0,05	0,03	0,02	0,1	0,08	0,09	0,03	0,09
Odcieki, m3/d - Zasobnia P	0,01	0,02	0,01	0,03	0,01	0,01	0,01	0	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0	0,01	0,01	0,02	0,02	0,03	0,01	0,02
Rok badań													2003												
Data (dzień.miesiac)	23.11	24.11	25.11	26.11	27.11	28.11	29.11	30.11	1.12	2.12	3.12	4.12	5.12	6.12	7.12	8.12	9.12	10.12	11.12	12.12	13.12	14.12	15.12	16.12	17.12
Kolejny dzień pomiaru	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Opady atmosferyczne, m3/d	0	0	0,96	0	0,04	0,73	0,06	0	0	0	0	0,13	0,36	0,08	0	0	0	0	0,4	0,42	2,92	2,67	0,23	0	0,17
Odcieki, m3/d - Zasobnia S	0,02	0	0	0	0,09	0,01	0,15	0	0,02	0,08	0,1	0,02	0,01	0,03	0	0,05	0,06	0,04	0,02	0,03	0,12	0,67	0	1,46	0,18
Odcieki, m3/d - Zasobnia P	0,02	0	0	0	0,05	0,01	0	0	0,04	0,01	0,01	0,01	0,01	1	0,03	0,02	0,02	0,02	0,02	0,01	0,08	0,33	0,02	0,39	0,1
Rok badań							20	03												2004					
Data (dzień.miesiac)	18.12	19.12	20.12	21.12	22.12	23.12	24.12	25.12	26.12	27.12	28.12	29.12	30.12	31.12	1.01.	2.01	3.01	4.01	5.01	6.01	7.01	8.01	9.01	10.01	11.01
Kolejny dzień pomiaru	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225
Opady atmosferyczne, m3/d	0	0	0,08	0,02	0	0	0	0	0	0	0	0	0	0,02	0	0,06	0	0	0	0,88	0,42	0,02	0,31	0,29	2,44
Odcieki, m3/d - Zasobnia S	0,17	0,15	0,13	0,08	0,1	0,07	0,06	0,06	0,05	0,06	0,01	0,04	0,04	0,03	0,01	0,01	0	0,01	0	0	0,09	0,12	0,13	0,08	0,18
Odcieki, m3/d - Zasobnia P	0,08	0,06	0,07	0,04	0,03	0,03	0,02	0,02	0,02	0,02	0,03	0	0	0,02	0,01	0,01	0	0,02	0,02	0,01	0,01	0,05	0,04	0,09	0,04
Rok badań													2004												
Data (dzień.miesiac)	12.01	13.01	14.01	15.01	16.01	17.01	18.01	19.01	20.01	21.01	22.01	23.01	24.01	25.01	26.01	27.01	28.01	29.01	30.01	31.01	1.02	2.02	3.02	4.02	5.02
Kolejny dzień pomiaru	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250
Opady atmosferyczne, m3/d	0,94	1,11	0,38	0,54	0,77	1,19	0,02	0,69	0,06	0,15	0	0	0,02	0	0	0,02	0,04	0,44	0,08	0,29	0,75	1,94	1,21	0	0,42
Odcieki, m3/d - Zasobnia S	0,84	0,95	0,55	0,4	0,4	0,47	0,4	0,46	0,33	0,29	0,22	0,16	0,09	0,14	0,12	0,08	0,09	0,07	0,17	0,13	0,37	0,43	1,7	0,92	0,51
Odcieki, m3/d - Zasobnia P	0,22	0,33	0,12	0,11	0,14	0,16	0,14	0,17	0,14	0,15	0,09	0,06	0,06	0,01	0,05	0,01	0,06	0,04	0,02	0,06	0,08	0,02	0,15	0,51	0,22

Rok badań													2004												
Data (dzień.miesiac)	6.02	7.02	8.02	9.02	10.02	11.02	12.02	13.02	14.02	15.02	16.02	17.02	18.02	19.02	20.02	21.02	22.02	23.02	24.02	25.02	26.02	27.02	28.02	29.02	1.03
Kolejny dzień pomiaru	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275
Opady atmosferyczne, m3/d	0,65	0,17	1,52	0,21	0,98	0,1	0,13	0,06	0	0	0	0,1	0,23	0	0	0	0	0	0	0,04	0,08	0	0,06	0	0,46
Odcieki, m3/d - Zasobnia S	0,33	0,39	0,33	0,41	0,34	0,37	0,46	0,31	0,33	0,34	0,27	0,24	0,22	0,24	0,2	0,15	0,16	0,17	0,12	0,12	0,1	0,1	0,12	0,06	0,06
Odcieki, m3/d - Zasobnia P	0,16	0,17	0,12	0,18	0,15	0,23	0,19	0,11	0,12	0,08	0,05	0,18	0,09	0,1	0,09	0,06	0,01	0,11	0,16	0,13	0,12	0,07	0,05	0,05	0,03
Rok badań													2004												
Data (dzień.miesiac)	2.03	3.03	4.03	5.03	6.03	7.03	8.03	9.03	10.03	11.03	12.03	13.03	14.03	15.03	16.03	17.03	18.03	19.03	20.03	21.03	22.03	23.03	24.03	25.03	26.03
Kolejny dzień pomiaru	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
Opady atmosferyczne, m3/d	0,04	0	0	0	0	0,1	0	0,5	0,02	0	0	0	0,1	0	0	0	0	0,33	1,82	0	0,04	0,23	0,58	0	0
Odcieki, m3/d - Zasobnia S	0,07	0,11	0,05	0,07	0,06	0,2	0,03	0,04	0,17	0,07	0,05	0,07	0,09	0,07	0,07	0,07	0,01	0,1	0,14	0,07	0,14	0,15	0,19	0,19	0,13
Odcieki, m3/d - Zasobnia P	0,04	0,04	0,03	0,03	0,04	0,01	0,03	0,01	0,03	0,03	0,02	0	0,01	0,01	0,01	0,01	0,04	0,02	0,07	0,04	0,07	0,01	0,07	0,12	0,08
Rok badań													2004												
Data (dzień.miesiac)	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325
Kolejny dzień pomiaru	27.03	28.03	29.03	30.03	31.03	1.04	2.04	3.04	4.04	5.04	6.04	7.04	8.04	9.04	10.04	11.04	12.04	13.04	14.04	15.04	16.04	17.04	18.04	19.04	20.04
Opady atmosferyczne, m3/d	0	0	0	0	0	0	0	0	0,19	0,19	0,84	0	0	0,33	0	0	0	0	0	0	0	0	0	0,19	0
Odcieki, m3/d - Zasobnia S	0,19	0,09	0,16	0,11	0,05	0,2	0,09	0,09	0,01	0,03	0,06	0,12	0,11	0,2	0,09	0,04	0,09	0,01	0,07	0,07	0,09	0,05	0,06	0,02	0,07
Odcieki, m3/d - Zasobnia P	0,04	0,1	0,12	0,14	0,04	0,03	0,06	0,09	0,01	0,1	0,08	0,08	0,07	0,07	0,05	0,07	0,06	0,03	0,05	0,06	0,06	0,13	0,02	0,01	0,05
Rok badań													2004												
Data (dzień.miesiac)	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350
Kolejny dzień pomiaru	21.04	22.04	23.04	24.04	25.04	26.04	27.04	28.04	29.04	30.04	1.05	2.05	3.05	4.05	5.05	6.05	7.05	8.05	9.05	10.05	11.05	12.05	13.05	14.05	15.05
Opady atmosferyczne, m3/d	0	0	1,57	0,4	0	0	0	0	0	0	0,02	0	0,08	0	0	1,5	0,02	0	0,13	1,44	0,04	0	0	0	2,3
Odcieki, m3/d - Zasobnia S	0,06	0,07	0,05	0,1	0,14	0,18	0,1	0,12	0,09	0,1	0,06	0,13	0,11	0,11	0,05	0,17	0,08	0,08	0,08	0,17	0,09	0,15	0,14	0,16	0,26
Odcieki, m3/d - Zasobnia P	0,04	0,04	0,05	0,05	0,22	0,12	0,1	0,09	0,09	0,09	0,06	0,08	0,09	0,1	0,12	0,17	0,08	0,08	0,08	0,17	0,09	0,19	0,17	0,14	0,19
Rok badań													2004												
Data (dzień.miesiac)	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375
Kolejny dzień pomiaru	16.05	17.05	18.05	19.05	20.05	21.05	22.05	23.05	24.05	25.05	26.05	27.05	28.05	29.05	30.05	31.05	1.06	2.06	3.06	4.06	5.06	6.06	7.06	8.06	9.06
Opady atmosferyczne, m3/d	0	0	0	0	0	1,65	0,79	1,75	0,23	0,21	0	0,54	0,19	0	0	0	1,38	0,06	0	0,29	0,54	0	0	0	0,15
Odcieki, m3/d - Zasobnia S	0,21	0,24	0,22	0,2	0,13	0,14	0,14	0,26	1,03	0,47	0,3	0,07	0,23	0,21	0,2	0,16	0,15	0,3	0,17	0,15	0,23	0,22	0,16	0,16	0,16
Odcieki, m3/d - Zasobnia P	0,16	0,22	0,18	0,14	0,13	0,11	0,13	0,15	1,02	0,32	0,28	0,2	0,21	0,17	0,17	0,17	0,12	0,12	0,13	0,27	0,17	0,24	0,15	0,29	0,13

Rok badań													2004												
Data (dzień.miesiac)	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
Kolejny dzień pomiaru	10.06	11.06	12.06	13.06	14.06	15.06	16.06	17.06	18.06	19.06	20.06	21.06	22.06	23.06	24.06	25.06	26.06	27.06	28.06	29.06	30.06	1.07	2.07	3.07	4.07
Opady atmosferyczne, m3/d	0,15	0	2,4	0,17	0,33	0	0,29	0	2,92	0,96	0,17	0	0	0,02	0,81	0	0	0	0,04	0	0	1,27	0,17	0,06	0
Odcieki, m3/d - Zasobnia S	0,16	0,18	0,09	0,16	0,29	0,23	0,22	0,19	0,17	0,65	0,49	0,35	0,61	0,25	0,22	0,2	0,45	0,42	0,3	0,19	0,17	0,22	0,03	0,12	0,11
Odcieki, m3/d - Zasobnia P	0,13	0,08	0,21	0,21	0,17	0,27	0,23	0,21	0,59	0,48	0,38	0,01	0,76	0,26	0,59	0,41	0,35	0,27	0,23	0,2	0,17	0,17	0,16	0,12	0,14
Rok badań													2004												
Data (dzień.miesiac)	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	147	418	419	420	421	422	423	424	425
Kolejny dzień pomiaru	5.07	6.07	7.07	8.07	9.07	10.07	11.07	12.07	13.07	14.07	15.07	16.07	17.07	18.07	19.07	20.07	21.07	22.07	23.07	24.07	25.07	26.07	27.07	28.07	29.07
Opady atmosferyczne, m3/d	0,02	0	0	1,42	1,17	0	0,54	0,65	1,63	0,1	0	0,29	0	0	0	6,16	0	1,84	0	0	0,02	0	0,02	0,71	0
Odcieki, m3/d - Zasobnia S	0,09	0,08	0,07	0,29	0,23	0,11	0,11	0,13	0,13	0,09	0,1	0,09	0,05	0,06	0,07	0,15	1,03	0,29	0,23	0,17	0,15	0,18	0,03	0,17	0,01
Odcieki, m3/d - Zasobnia P	0,07	0,09	0,08	0,39	0,27	0,1	0,13	0,12	1,26	0,1	0,16	0,02	0,04	0,03	0,05	0,11	0,89	0,44	0,28	0,04	0,05	0,06	0,21	0,22	0,01
Rok badań													2004												
Data (dzień.miesiac)	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450
Kolejny dzień pomiaru	30.07	31.07	1.08	2.08	3.08	4.08	5.08	6.08	7.08	8.08	9.08	10.08	11.08	12.08	13.08	14.08	15.08	16.08	17.08	18.08	19.08	20.08	21.08	22.08	23.08
Opady atmosferyczne, m3/d	0	0,23	0	0	0	0	0	0	0	0	0,21	0	0	0,04	0,31	3,72	0	0	0,04	0	0	0,9	0,04	0	0
Odcieki, m3/d - Zasobnia S	0,06	0,09	0,06	0,7	0,06	0,05	0,05	0,04	0,1	0	0,05	0,04	0,03	0,04	0,04	0,18	0,16	0,05	0	0,07	0,07	0,06	0,05	0,16	0
Odcieki, m3/d - Zasobnia P	0,03	0,05	0,03	0,03	0,08	0,07	0,07	0,07	0,06	0,01	0,07	0,04	0,04	0,05	0,05	0,1	0,18	0,17	0,08	0,07	0,06	0,06	0,09	0,01	0,09
Rok badań													2004												
Data (dzień.miesiac)	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475
Kolejny dzień pomiaru	24.08	25.08	26.08	27.08	28.08	29.08	30.08	31.08	1.09	2.09	3.09	4.09	5.09	6.09	7.09	8.09	9.09	10.09	11.09	12.09	13.09	14.09	15.09	16.09	17.09
Opady atmosferyczne, m3/d	1,4	0,15	0,23	0,86	0	0,06	3,07	0,92	0	0	0	0	0	0	0	0	0	0	0	0,88	0	0,31	0	0	0
Odcieki, m3/d - Zasobnia S	0,05	0,1	0,12	0,07	0,13	0,1	0,12	0,47	0,29	0,19	0,09	0,1	0,09	0,08	0	0,17	0,06	0,05	0,04	0,04	0,07	0,06	0,05	0,05	0,05
Odcieki, m3/d - Zasobnia P	0,05	0,09	0,1	0,08	0,06	0,09	0,04	0,46	0,25	0,14	0,1	0,07	0,08	0,05	0,02	0,02	0,02	0,04	0,02	0,02	0,07	0,03	0,05	0,09	0,04
Rok badań													2004												
Data (dzień.miesiac)	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500
Kolejny dzień pomiaru	18.09	19.09	20.09	21.09	22.09	23.09	24.09	25.09	26.09	27.09	28.09	29.09	30.09	1.10	2.10	3.10	4.10	5.10	6.10	7.10	8.10	9.10	10.10	11.10	
Opady atmosferyczne, m3/d	0	0,1	0,06	0,04	0	1,15	0,38	0,02	0	0,08	0,19	2,03	0,4	0	0	0	0	0	1,67	0	0	0	0	0	0
Odcieki, m3/d - Zasobnia S	0,08	0,01	0,04	0,04	0,04	0,04	0,03	0,08	0,05	0,06	0,05	0,05	0,19	0,2	0,14	0,09	0,07	0,08	0,08	0,07	0,14	0,1	0,11	1,05	0,02
Odcieki, m3/d - Zasobnia P	0,03	0	0,1	0,04	0,09	0,04	0,06	0,02	0,07	0,05	0,05	0,05	0,16	0,18	0,1	0,06	0,13	0,07	0,06	0,05	0,1	0,08	0,06	0,05	0,05

Rok badań													2004												
Data (dzień.miesiac)	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525
Kolejny dzień pomiaru	12.10	13.10	14.10	15.10	16.10	17.10	18.10	19.10	20.10	21.10	22.10	23.10	24.10	25.10	26.10	27.10	28.10	29.10	30.10	31.10	1.11	2.11	3.11	4.11	5.11.
Opady atmosferyczne, m3/d	0	0	0	0,4	1,46	0	0,9	0,02	0,92	0,23	0	0	0	0,19	1,63	0,52	0	0,1	0,46	0	0	0	0,08	0,27	1,11
Odcieki, m3/d - Zasobnia S	0,07	0,06	0,05	0,05	0,06	0,21	0,13	0,02	0,11	0,1	0,17	0,15	0,11	0,09	0,07	0,13	0,31	0,2	0,13	0,02	0,09	0,14	0,15	0,1	0,09
Odcieki, m3/d - Zasobnia P	0,05	0,04	0,06	0,04	0,08	0,12	0,06	0,06	0,08	0,09	0,13	0,13	0,05	0,1	0,06	0,07	0,23	0,14	0,05	0,12	0,11	0,05	0,07	0,18	0,12
Rok badań													2004												
Data (dzień.miesiac)	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550
Kolejny dzień pomiaru	6.11	7.11	8.11	9.11	10.11	11.11	12.11	13.11	14.11	15.11	16.11	17.11	18.11	19.11	20.11	21.11	22.11	23.11	24.11	25.11	26.11	27.11	28.11	29.11	30.11
Opady atmosferyczne, m3/d	0,38	0,88	1,02	0	0,02	0,5	0,48	0	0,04	0,33	2,38	1,78	1,4	0,38	0	1,92	0,58	0	0	0	0,19	0,67	0,13	0	0
Odcieki, m3/d - Zasobnia S	0,1	0,09	0,1	0,26	0,31	0,25	0,22	0,18	0,18	0,18	0,14	0,12	0,69	0,79	0,6	0,62	0,69	2,95	1	0,47	0,39	0,36	0,25	0,31	0,13
Odcieki, m3/d - Zasobnia P	0,19	0,15	0,17	0,16	0,15	0,28	0,17	0,18	0,16	0,16	0,12	0,1	0,49	0,6	0,46	0,47	0,47	1,88	0,82	0,27	0,29	0,16	0,13	0,13	0,08
Rok badań													2004												
Data (dzień.miesiac)	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575
Kolejny dzień pomiaru	1.12	2.12	3.12	4.12	5.12	6.12	7.12	8.12	9.12	10.12	11.12	12.12	13.12	14.12	15.12	16.12	17.12	18.12	19.12	20.12	21.12	22.12	23.12	24.12	25.12
Opady atmosferyczne, m3/d	0,36	0	0	0	0,1	0	0	0	0	0	0	0	0	0	0	0	0,23	1,11	0,1	0,02	0	0,31	1,17	0,13	0
Odcieki, m3/d - Zasobnia S	0,25	0,19	0,64	0,13	0,09	0	0,24	0,06	0,06	0,06	0,04	0,07	0,03	0,06	0,05	0,07	0,14	0,2	0,25	0,3	0,1	0,11	0,22	0,17	0,28
Odcieki, m3/d - Zasobnia P	0,1	0,07	0,08	0,06	0,06	0,05	0,14	0,05	0,05	0,04	0,04	0,05	0,04	0,06	0,05	0,04	0,09	0,11	0,13	0,07	0,04	0,05	0,73	0,09	0,1
Rok badań			20	04												2005									
Data (dzień.miesiac)	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600
Kolejny dzień pomiaru	26.12	27.12	28.12	29.12	30.12	31.12	1.01.	2.01	3.01	4.01	5.01	6.01	7.01	8.01	9.01	10.01	11.01	12.01	13.01	14.01	15.01	16.01	17.01	18.01	19.01
Opady atmosferyczne, m3/d	3,24	0,61	0,08	0,02	0	0,5	0,08	0,77	1,44	0,81	0,04	0,63	0	0,36	0	0	0	0,13	0,5	0,1	0	0	0	0,25	0,08
Odcieki, m3/d - Zasobnia S	0,3	1,32	1,16	0,7	0,39	0,32	0,25	0,32	0,3	0,56	1,16	0,57	0,45	0,36	0,36	0,32	0,3	0,23	0,23	0,22	0,21	0,19	0,21	0,18	0,16
Odcieki, m3/d - Zasobnia P	0,18	0,98	1,14	0,63	0,37	0,27	0,2	0,35	0,23	0,39	0,99	0,6	0,33	0,42	0,11	0,38	0,12	0,16	0,21	0,14	0,12	0,16	0,13	0,12	0,09
Rok badań													2005												
Data (dzień.miesiac)	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625
Kolejny dzień pomiaru	20.01	21.01	22.01	23.01	24.01	25.01	26.01	27.01	28.01	29.01	30.01	31.01	1.02.	2.02	3.02	4.02	5.02	6.02	7.02	8.02	9.02	10.02	11.02	12.02	13.02
Opady atmosferyczne, m3/d	2,21	0,56	0,13	0,29	0,04	0,25	0,02	0,15	0,02	0	0,13	0,77	0	0,23	0	0	0	0	0	0	0	0,29	0	2,67	0,31
Odcieki, m3/d - Zasobnia S	0,17	0,65	0,32	0,41	0,48	0,34	0,27	0,23	0,22	0,11	0,23	0,23	0,4	0,44	0,29	0,26	0,23	0,2	0,19	0,18	0,16	0,18	0,15	0,51	0,6
Odcieki, m3/d - Zasobnia P	0,08	0,49	0,44	0,37	0,38	0,26	0,19	0,13	0,16	0,09	0,08	0,06	0,19	0,27	0,25	0,19	0,15	0,17	0,6	0,01	0,12	0,13	0,06	0,4	0,79

Rok badań													2005												
Data (dzień.miesiac)	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650
Kolejny dzień pomiaru	14.02	15.02	16.02	17.02	18.02	19.02	20.02	21.02	22.02	23.02	24.02	25.02	26.02	27.02	28.02	1.03	2.03	3.03	4.03	5.03	6.03	7.03	8.03	9.03	10.03
Opady atmosferyczne, m3/d	0,21	0	0,77	0,13	0	0,17	0	0	0,79	1,57	0,52	1,09	0,9	0,08	0,21	0,25	0	0	0,02	0,08	0,1	0,15	0,04	0,31	0
Odcieki, m3/d - Zasobnia S	0,54	0,43	0,29	0,25	0,27	0,26	0,27	0,17	0,2	0,21	0,4	0,34	0,33	0,38	0,89	0,31	0,28	0,25	0,22	0,2	0,18	0,23	0,21	0,22	0,28
Odcieki, m3/d - Zasobnia P	0,52	0,39	0,12	0,31	0,27	0,33	0,27	0,22	0,14	0,16	0,39	0,27	0,36	0,36	0,36	0,31	0,3	0,24	0,31	0,27	0,31	0,29	0,23	0,21	0,72
Rok badań				-									2005		-										
Data (dzień.miesiac)	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675
Kolejny dzień pomiaru	11.03 .05	12.03	13.03	14.03	15.03	16.03	17.03	18.03	19.03	20.03	21.03	22.03	23.03	24.03	25.03	26.03	27.03	28.03	29.03	30.03	31.03	1.04	2.04	3.04	4.04
Opady atmosferyczne, m3/d	0,63	0,31	0,06	0	0	0	0,33	1,11	0	0	0	0	0,13	0	0	0,15	0	0	0	0	0	0	0	0	0
Odcieki, m3/d - Zasobnia S	0,73	0,8	0,74	0,67	0,59	0,61	0,72	0,77	0,37	0,28	0,25	1,31	0,36	0,3	0,28	0,25	0,21	0,22	0,23	0,18	0,17	0,15	0,17	0,13	0,17
Odcieki, m3/d - Zasobnia P	0,75	0,74	0,6	0,5	0,43	0,86	0,59	0,22	0,22	0,24	1,29	0,34	0,28	0,4	0,2	0,16	0,21	0,18	0,18	0,17	0,33	0,13	0,2	0,12	0,13
Rok badań				•	•		•	•	•		•		2005						•	•	•	•	•		
Data (dzień.miesiac)	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700
Kolejny dzień pomiaru	5.04	6.04	7.04	8.04	9.04	10.04	11.04	12.04	13.04	14.04	15.04	16.04	17.04	18.04	19.04	20.04	21.04	22.04	23.04	24.04	25.04	26.04	27.04	28.04	29.04
Opady atmosferyczne, m3/d	0,06	0,1	0,94	0	0,19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,74	0	0
Odcieki, m3/d - Zasobnia S	0,14	0,15	0,14	0,16	0,2	0,09	0,15	0,13	0,15	0,13	0,12	0,13	0,09	0,14	0,12	0,11	0,1	0,1	0,13	0,12	0,07	0,08	0,1	0,17	0,17
Odcieki, m3/d - Zasobnia P	0,15	0,16	0,13	0,14	0,14	0,14	0,14	0,15	0,76	0,12	0,12	0,16	0,07	0,09	0,09	0,1	0,09	0,1	0,09	0,12	0,09	0,09	0,12	0,13	0,19
Rok badań													2005												
Data (dzień.miesiac)	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725
Kolejny dzień pomiaru	30.04	1.05	2.05	3.05	4.05	5.05	6.05	7.05	8.05	9.05	10.05	11.05	12.05	13.05	14.05	15.05	16.05	17.05	18.05	19.05	20.05	21.05	22.05	23.05	24.05
Opady atmosferyczne, m3/d	0	0	0	0	0	0,02	0,38	1,15	0,44	1,38	0,23	1,98	0,31	0	2,67	0	0,36	1,3	0	0	0	0,04	0,04	1,52	0
Odcieki, m3/d - Zasobnia S	0,2	0,28	0,23	0,04	0,03	0,04	0,1	0,12	0,16	0,19	0,29	0,08	0,37	0,14	0,63	0,7	0,66	0,27	0,69	0,45	0,35	0,29	0,24	0,29	0,25
Odcieki, m3/d - Zasobnia P	0,21	0,19	0,02	0,01	0,09	0,09	0,09	0,1	0,11	0,17	0,1	0,27	0,1	0,52	0,5	0,51	0,24	0,58	0,41	0,33	0,31	0,2	0,34	0,25	0,25
Rok badań													2005												
Data (dzień.miesiac)	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750
Kolejny dzień pomiaru	25.05	26.05	27.05	28.05	29.05	30.05	31.05	1.06	2.06	3.06	4.06	5.06	6.06	7.06	8.06	9.06	10.06	11.06	12.06	13.06	14.06	15.06	16.06	17.06	18.06
Opady atmosferyczne, m3/d	0	0	0	0	0	0	0	0	0	0,08	0	1,82	0	0,81	0,21	0	0,58	0	0	0,02	6,2	0	0	0,1	0
Odcieki, m3/d - Zasobnia S	0,27	0,19	0,27	0,44	0,2	0,17	0,2	0,13	0,16	0,14	0,12	0,15	0,26	0,21	0,18	0,16	0,16	0,35	0,15	0,22	0,14	3,68	1,33	0,63	0,4
Odcieki, m3/d - Zasobnia P	0,2	0,22	0,18	0,16	0,23	0,19	0,1	0,13	0,16	0,18	0,13	0,14	0,18	0,15	0,15	0,15	0,14	0,14	0,13	0,14	2,3	1,46	0,52	0,77	0,2

Rok badań													2005												
Data (dzień.miesiac)	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775
Kolejny dzień pomiaru	19.06	20.06	21.06	22.06	23.06	24.06	25.06	26.06	27.06	28.06	29.06	30.06	1.07	2.07	3.07	4.07	5.07	6.07	7.07	8.07	9.07	10.07	11.07	12.07	13.07
Opady atmosferyczne, m3/d	0	0	0,02	0	0	0	0,52	0	0	0	0	0	0,1	0	0	0	1,8	0,61	0,19	0,98	2,34	0,02	0	0	0
Odcieki, m3/d - Zasobnia S	0,3	0,39	0,26	0,22	0,2	0,18	0,18	0,13	0,2	0,17	0,13	0,27	0,14	0,12	0,11	0,11	0,11	0,12	0,2	0,41	0,53	0,48	0,54	0,32	0,27
Odcieki, m3/d - Zasobnia P	0,25	0,13	0,11	0,09	0,09	0,06	0,09	0,08	0,08	0,06	0,05	0,06	0,04	0,05	0,05	0,05	0,05	0,08	0,08	0,21	0,23	0,21	0,14	0,14	0,07
Rok badań													2005												
Data (dzień.miesiac)	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800
Kolejny dzień pomiaru	14.07	15.07	16.07	17.07	18.07	19.07	20.07	21.07	22.07	23.07	24.07	25.07	26.07	27.07	28.07	29.07	30.07	31.07	1.08	2.08	3.08	4.08	5.08	6.08	7.08
Opady atmosferyczne, m3/d	0	0,21	0	0	1,67	2,34	0,52	5,43	1,78	0,17	0	0,25	0	0	0,86	0,54	1,34	0	0	0	4,3	0,69	0,69	1,11	0,19
Odcieki, m3/d - Zasobnia S	0,23	0,21	0,15	0,32	0,21	0,4	1,75	0,6	3,34	1,17	1,11	1,17	0,48	0,38	0,31	0,47	0,46	0,36	0,43	0,34	0,28	2,95	2,11	0,87	0,64
Odcieki, m3/d - Zasobnia P	0,09	0,17	0,14	0,08	0,08	0,61	0,37	1,35	0,49	0,44	0,52	0,17	0,12	0,12	0,2	0,19	0,13	0,14	0,1	0,1	0,92	0,66	0,21	0,35	0,21
Rok badań													2005												
Data (dzień.miesiac)	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825
Kolejny dzień pomiaru	8.08	9.08	10.08	11.08	12.08	13.08	14.08	15.08	16.08	17.08	18.08	19.08	20.08	21.08	22.08	23.08	24.08	25.08	26.08	27.08	28.08	29.08	30.08	31.08	1.09
Opady atmosferyczne, m3/d	0	0,04	0,98	0,02	0,1	0,36	0	0	0	0	0	0	0	0	0,36	0	0,02	0,67	0	0	0	0	0	0	0
Odcieki, m3/d - Zasobnia S	0,56	0,41	0,43	0,18	0,27	0,21	0,09	0,09	0,1	0,11	0,16	0,15	0,16	0,14	0,14	0,11	0,12	0,12	0,13	0,15	0,11	0,1	0,1	0,11	0,07
Odcieki, m3/d - Zasobnia P	0,17	0,14	0,1	0,12	0,06	0,1	0,05	0,08	0,06	0,06	0,07	0,04	0,06	0,07	0,05	0,03	0,05	0,03	0,02	0,02	0,03	0,05	0,03	0,04	0,03
Rok badań													2005												
Data (dzień.miesiac)	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850
Kolejny dzień pomiaru	2.09	3.09	4.09	5.09	6.09	7.09	8.09	9.09	10.09	11.09	12.09	13.09	14.09	15.09	16.09	17.09	18.09	19.09	20.09	21.09	22.09	23.09	24.09	25.09	26.09
Opady atmosferyczne, m3/d	0	0	0,21	0	0	0	0	0	0,25	0	0,06	0	0	1,84	2,11	0	0,02	0	0	0	0	0	0	0	0,27
Odcieki, m3/d - Zasobnia S	0,12	0,09	0,12	0,1	0,08	0,08	0,08	0,09	0,08	0,08	0,08	0,08	0,08	0,07	0,08	0,39	0,37	0,42	0,2	0,09	0,08	0,08	0,09	0,1	0,33
Odcieki, m3/d - Zasobnia P	0,03	0,03	0,03	0,02	0,04	0,02	0,03	0,03	0,03	0,02	0,03	0,05	0,05	0,07	0,15	0,1	0,2	0,07	0,03	0,02	0,02	0,02	0,02	0,11	0,04
Rok badań													2005												
Data (dzień.miesiac)	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875
Kolejny dzień pomiaru	27.09	28.09	29.09	30.09	1.10	2.10	3.10	4.10	5.10	6.10	7.10	8.10	9.10	10.10	11.10	12.10	13.10	14.10	15.10	16.10	17.10	18.10	19.10	20.10	21.10
Opady atmosferyczne, m3/d	0	0,9	1,61	0	0,04	1,07	0	0	0	0,02	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,02
Odcieki, m3/d - Zasobnia S	0,1	0,09	0,1	0,16	0,11	0,11	0,11	0,17	0,15	0,13	0,14	0,1	0,1	0,1	0,1	0,08	0,08	0,08	0,06	0,07	0,05	0,05	0,06	0,05	0,04
Odcieki, m3/d - Zasobnia P	0,03	0,04	0,07	0,06	0,05	0,06	0,06	0,04	0,04	0,03	0,03	0,02	0,03	0,02	0,03	0,03	0,2	0,02	0,01	0,02	0,02	0,02	0,02	0,02	0,02

t																									
Rok badań													2005												
Data (dzień.miesiac)	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900
																					11.11				
Kolejny dzień pomiaru	22.10	23.10	24.10	25.10	26.10	27.10	28.10	29.10	30.10	31.10	1.11	2.11	3.11	4.11	5.11	6.11	7.11	8.11	9.11	10.11	1	12.11	13.11	14.11	15.11
Opady atmosferyczne, m3/d	0,04	0,19	0,36	0,1	0	0	0	0	0	0	0,06	0,04	0	0	0,25	0	0	0,02	0	0,02	0	0	0	0	0,29
Odcieki, m3/d - Zasobnia S	0,05	0,06	0,06	0,06	0,06	0,06	0,05	0,06	0,07	0,05	0,06	0,06	0,37	0,06	0,06	0,05	0,05	0,06	0,06	0,04	0,05	0,05	0,05	0,05	0,05
Odcieki, m3/d - Zasobnia P	0,02	0,02	0,02	0,02	0,01	0,02	0,02	0,02	0,01	0,02	0,02	0,02	0,02	0,01	0,02	0,01	0,02	0,01	0,02	0,02	0,02	0,01	0,01	0,02	0,02
Rok badań													2005												
Data (dzień.miesiac)	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915										
Kolejny dzień pomiaru	16.11	17.11	18.11	19.11	20.11	21.11	22.11	23.11	24.11	25.11	26.11	27.11	28.11	29.11	30.11										
Opady atmosferyczne, m3/d	1,9	0,02	0,13	0	0,15	0,08	0,06	0,06	0	0	0,17	0	0,02	0	0										
Odcieki, m3/d - Zasobnia S	0,06	0,11	0,16	0,08	0,09	0,09	0,08	0,08	0,08	0,1	0,07	0,08	0,07	0,06	0,07										
Odcieki, m3/d - Zasobnia P	0.12	0.02	0.03	0.03	0.03	0.03	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03										

Rok badań													2005												
Data (dzień.miesiac)	26.10	27.10	28.10	29.10	30.10	31.10	1.11	2.11	3.11	4.11	5.11	6.11	7.11	8.11	9.11	10.11	11.11	12.11	13.11	14.11	15.11	16.11	17.11	18.11	19.11
Kolejny dzień pomiaru	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Dawkowana woda, cm ³	76	36	2	27	25	211	0	81	95	32	0	47	67	103	2	59	5	5	0	13	2	16	0	4	38
Odcieki, cm3/d - reaktor S	0	180	430	170	0	135	0	0	0	835	0	410	0	0	0	0	0	0	0	0	400	0	0	850	310
Odcieki, cm3/d - reaktor SR	170	0	455	500	150	300	0	0	0	1110	0	750	0	0	0	552	250	300	0	0	610	0	0	0	305
Odcieki, cm3/d - reaktor P	330	240	800	1070	340	220	230	250	0	600	0	400	0	0	0	0	0	0	0	0	36	0	0	0	410
Odcieki, cm3/d - reaktor PR	160	0	600	650	345	330	340	330	0	1420	0	580	0	0	0	0	0	0	0	0	560	0	0	830	700
Rok badań													2005												
Data (dzień.miesiac)	20.11	21.11	22.11	23.11	24.11	25.11	26.11	27.11	28.11	29.11	30.11	1.12	2.120	3.12	4.12	5.12	6.12	7.12	8.12	9.12	10.12	11.12	12.12	13.12	14.12
kolejny dzień pomiaru	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Dawkowana woda, cm3	7	25	65	167	104	36	56	0	14	131	18	85	0	9	11	5	9	20	4	7	0	5	40	13	43
Odcieki, cm3/d - reaktor S	410	310	210	260	420	390	120	120	200	165	150	100	100	120	190	130	150	100	63	0	0	0	130	80	90
Odcieki, cm3/d - reaktor SR	400	300	710	400	580	600	200	180	150	540	240	149	200	260	240	220	190	150	75	0	0	0	140	84	212
Odcieki, cm3/d - reaktor P	240	225	200	200	140	160	190	90	110	49	75	67	0	10	100	93	180	58	0	0	20	80	136	38	0
Odcieki, cm3/d - reaktor PR	600	400	550	465	220	310	250	180	150	100	120	70	20	80	130	150	160	0	49	0	0	50	102	96	0
Rok badań									2005												20)06			
Data (dzień.miesiac)	15.12	16.12	17.12	18.12	19.12	20.12	21.12	22.12	23.12	24.12	25.12	26.12	27.12	28.12	29.12	30.12	31.12	1.01	2.01	3.01	4.01	5.01	6.01	7.01	8.01
Kolejny dzień pomiaru	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Dawkowana woda, cm3	18	38	157	24	50	16	16	72	0	0	0	0	29	16	135	34	0	0	139	13	124	202	140	0	68
Odcieki, cm3/d - reaktor S	100	66	0	0	0	32	55	42	0	50	48	40	0	98	49	0	0	0	66	0	55	80	84	70	70
Odcieki, cm3/d - reaktor SR	290	240	0	0	0	0	0	40	0	80	70	80	0	172	348	0	0	70	80	0	0	90	130	0	74
Odcieki, cm3/d - reaktor P	0	0	0	0	0	0	0	34	0	0	0	0	0	52	32	36	50	160	200	0	0	0	0	0	45
Odcieki, cm3/d - reaktor PR	49	0	0	0	0	100	0	229	0	0	50	0	0	0	168	130	180	240	260	350	0	0	0	0	0
Rok badań													2006												
Data (dzień.miesiac)	9.01	10.01	11.01	12.01	13.01	14.01	15.01	16.01	17.01	18.01	19.01	20.01	21.01	22.01	23.01	24.01	25.01	26.01	27.01	28.01	29.01	30.01	31.01	1.02	2.02
Kolejny dzień pomiaru	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Dawkowana woda, cm3	151	20	18	47	162	30	47	13	207	29	25	252	14	20	83	24	70	89	37	122	101	47	56	140	20
Odcieki, cm3/d - reaktor S	139	158	90	103	150	139	80	90	105	120	0	142	0	38	0	164	60	68	56	120	148	160	195	80	90
Odcieki, cm3/d - reaktor SR	98	360	280	91	170	126	200	180	2018	260	200	250	0	0	0	89	305	186	204	240	142	209	200	180	120
Odcieki, cm3/d - reaktor P	138	192	0	0	0	139	0	62	30	33	82	15	0	0	0	400	0	0	0	0	0	0	0	0	0
Odcieki, cm3/d - reaktor PR	120	174	0	0	4	160	120	100	30	209	405	260	0	100	150	90	15	23	23	85	112	162	42	32	28

Załącznik 2. Objętości wody wprowadzonej do reaktorów S, SR, P i PR oraz objętości powstających odcieków - skala laboratoryjna

Rok badań													2006												
Data (dzień.miesiac)	3.02	4.02	5.02	6.02	7.02	8.02	9.02	10.02	11.02	12.02	13.02	14.02	15.02	16.02	17.02	18.02	19.02	20.02	21.02	22.02	23.02	24.02	25.02	26.02	27.02
Kolejny dzień pomiaru	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125
Dawkowana woda, cm ³	39	50	43	531	158	39	61	36	182	32	77	121	37	74	265	79	0	76	37	99	36	36	36	46	51
Odcieki, cm3/d - reaktor S	70	30	29	40	105	90	80	110	105	90	70	110	98	135	90	98	90	60	160	110	115	110	100	40	35
Odcieki, cm3/d - reaktor SR	200	20	18	150	195	160	140	260	90	65	83	298	255	250	195	190	160	120	170	300	360	160	170	90	105
Odcieki, cm3/d - reaktor P	63	19	34	20	200	110	100	36	125	60	40	40	60	145	40	45	100	100	150	32	220	100	105	130	120
Odcieki, cm3/d - reaktor PR	100	25	31	50	100	185	200	325	195	150	200	155	130	205	105	105	70	75	176	350	480	150	170	90	80
Rok badań													2006												
Data (dzień.miesiac)	28.02	1.03	2.03	3.03	4.03	5.03	6.03	7.03	8.03	9.03	10.03	11.03	12.03	13.03	14.03	15.03	16.03	17.03	18.03	19.03	20.03	21.03	22.03	23.03	24.03
kolejny dzień pomiaru	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Dawkowana woda, cm3	175	72	144	126	77	39	140	45	38	39	39	0	0	95	39	76	88	0	0	0	41	205	153	166	50
Odcieki, cm3/d - reaktor S	39	55	52	65	79	180	170	30	80	110	90	50	45	30	5	100	0	66	99	100	99	60	135	220	90
Odcieki, cm3/d - reaktor SR	115	160	180	120	125	210	190	57	120	400	300	120	115	130	100	540	500	89	160	150	170	400	690	600	420
Odcieki, cm3/d - reaktor P	135	47	100	100	105	175	180	100	0	134	105	50	45	45	0	110	0	5	100	100	100	17	190	170	120
Odcieki, cm3/d - reaktor PR	68	100	130	100	100	450	505	0	0	510	500	0	20	0	0	1000	0	90	0	1	0	380	580	520	200
Rok badań													2006												
Data (dzień.miesiac)	25.03	26.03	27.03	28.03	29.03	30.03	31.03	1.04	2.04	3.04	4.04	5.04	6.04	7.04	8.04	9.04	10.04	11.04	12.04	13.04	14.04	15.04	16.04	17.04	18.04
Kolejny dzień pomiaru	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
Dawkowana woda, cm3	57	0	40	32	95	128	279	0	0	43	37	76	36	211	0	0	81	95	37	47	67	0	0	0	162
Odcieki, cm3/d - reaktor S	65	60	70	105	0	100	65	100	100	100	0	40	40	0	0	0	0	0	0	28	0	250	266	266	266
Odcieki, cm3/d - reaktor SR	110	100	95	92	500	200	200	90	100	100	0	260	250	590	0	0	0	0	0	108	150	300	166	166	166
Odcieki, cm3/d - reaktor P	60	65	62	30	0	17	40	90	150	150	0	50	50	0	0	0	0	0	0	0	0	450	50	50	50
Odcieki, cm3/d - reaktor PR	100	100	100	105	310	500	280	166	160	170	0	240	250	50	0	0	0	0	0	86	300	390	293	293	293
Rok badań													2006												
Data (dzień.miesiac)	19.04	20.04	21.04	22.04	23.04	24.04	25.04	26.04	27.04	28.04	29.04	30.04	1.05	2.05	3.05	4.05	5.05	6.05	7.05	8.05	9.05.	10.05	11.05	12.05	13.05
Kolejny dzień pomiaru	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Dawkowana woda, cm3	38	39	65	0	0	167	104	36	556	131	38	0	58	37	0	36	43	0	0	72	157	36	72	36	0
Odcieki, cm3/d - reaktor S	0	0	0	101	101	101	0	0	20	0	100	100	100	0	90	90	0	150	150	150	0	0	100	240	63
Odcieki, cm3/d - reaktor SR	510	550	0	177	177	177	0	0	120	160	237	237	237	200	165	165	680	296	296	296	180	650	300	100	100
Odcieki, cm3/d - reaktor P	0	0	0	70	70	70	0	0	56	0	100	100	100	27	80	80	0	70	70	70	0	0	150	80	36
Odcieki, cm ³ /d - reaktor PR	50	500	280	303	303	303	0	0	24	280	366	367	367	100	0	0	500	366	366	366	100	480	240	300	240

Rok badań													2006												
Data (dzień.miesiac)	14.05	15.05	16.05	17.05	18.05	19.05	20.05	21.05	22.05	23.05	24.05	25.05	26.05	27.05	28.05	29.05	30.05	31.05	1.06	2.06	3.06	4.06	5.06	6.06	7.06
Kolejny dzień pomiaru	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225
Dawkowana woda, cm3	0	135	36	130	38	124	0	0	198	140	68	151	39	0	0	47	0	162	119	39	0	0	47	0	207
Odcieki, cm3/d - reaktor S	63	63	0	56	100	0	70	70	70	0	0	80	0	166	166	166	35	35	0	0	60	60	60	0	19
Odcieki, cm3/d - reaktor SR	100	100	0	100	100	450	263	263	263	190	100	100	500	217	217	217	290	290	90	410	310	310	310	120	120
Odcieki, cm3/d - reaktor P	36	37	0	41	90	50	68	68	68	80	0	180	80	77	77	77	20	20	0	100	50	50	50	45	45
Odcieki, cm3/d - reaktor PR	240	240	0	0	100	300	163	163	163	120	100	200	600	160	160	160	175	175	150	480	200	200	200	300	300
Rok badań													2006												
Data (dzień.miesiac)	8.06	9.06	10.06	11.06	12.06	13.06	14.06	15.06	16.06	17.06	18.06	19.06	20.06	21.06	22.06	23.06	24.06	25.06	26.06	27.06	28.06	29.06	30.06	1.07	2.07
kolejny dzień pomiaru	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250
Dawkowana woda, cm ³	38	39	0	0	252	83	70	0	109	0	39	122	101	47	56	140	0	0	531	0	158	37	40	0	0
Odcieki, cm3/d - reaktor S	110	0	83	83	83	0	0	80	75	100	100	100	10	62	200	180	67	67	67	145	145	250	280	70	70
Odcieki, cm3/d - reaktor SR	80	480	303	303	303	110	100	165	165	100	100	100	50	15	100	50	133	133	133	125	125	400	280	293	293
Odcieki, cm3/d - reaktor P	100	20	55	55	55	100	0	70	70	67	67	67	50	48	110	65	67	67	67	100	100	100	150	70	70
Odcieki, cm3/d - reaktor PR	290	580	183	183	183	300	100	125	125	93	93	93	105	98	190	75	100	100	100	0	0	520	440	133	133
Rok badań													2006												
Data (dzień.miesiac)	3.07	4.07	5.07	6.07	7.07	8.07	9.07	10.07	11.07	12.07	13.07	14.07	15.07	16.07	17.07	18.07	19.07	20.07	21.07	22.07	23.07	24.07	25.07	26.07	27.07
Kolejny dzień pomiaru	251	252	253	254	255	256	257	258	259	260	2561	262	263	264	265	266	267	268	269	270	271	272	273	274	275
Dawkowana woda, cm3	182	77	121	39	74	0	0	265	79	76	38	99	39	0	40	175	144	36	126	0	0	77	36	140	45
Odcieki, dm3/d - reaktor S	70	0	0	15	30	127	127	127	50	70	20	118	96	123	123	46	64	108	58	109	109	109	58	32	0
Odcieki, cm3/d - reaktor SR	293	48	100	325	200	233	233	233	50	44	41	93	84	81	81	70	136	120	74	154	154	154	39	76	90
Odcieki, cm3/d - reaktor P	70	50	100	90	100	35	35	35	105	45	22	120	0	109	109	70	64	110	60	86	86	86	20	69	0
Odcieki, cm3/d - reaktor PR	133	120	200	400	440	130	130	130	200	148	160	93	70	60	60	80	74	102	76	84	84	84	66	49	26
Rok badań		-				-	-	-		-	-	-	2006			-	-	-							
Data (dzień.miesiac)	28.07	29.07	30.07	31.07	1.08	2.08	3.08	4.08	5.08	6.08	7.08	8.08	9.08	10.08	11.08	12.08	13.08	14.08	15.08	16.08	17.08	18.08	19.08	20.08	21.08
Kolejny dzień pomiaru	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
Dawkowana woda, cm3	37	39	0	95	76	88	84	205	0	0	153	121	77	166	50	0	57	42	116	0	153	43	0	0	106
Odcieki, cm3/d - reaktor S	95	48	65	65	0	0	0	0	76	76	76	0	130	200	0	60	60	0	85	107	107	145	63	63	63
Odcieki, cm3/d - reaktor SR	65	40	44	44	0	0	0	0	25	25	25	0	152	500	500	0	0	88	100	68	68	145	92	92	92
Odcieki, cm3/d - reaktor P	85	68	46	46	0	79	0	0	33	33	33	42	170	300	150	60	60	0	62	50	50	103	60	60	60
Odcieki, cm ³ /d - reaktor PR	85	47	50	50	0	14	12	12	44	44	44	50	92	650	540	190	190	160	124	75	75	135	77	77	77

Rok badań													2006												
Data (dzień.miesiac)	22.08	23.08	24.08	25.08	26.08	27.08	28.08	29.08	30.08	31.08	1.09	2.09	3.09	4.09	5.09	6.09	7.09	8.09	9.09	10.09	11.09	12.09	13.09	14.09	15.09
Kolejny dzień pomiaru	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325
Dawkowana woda, cm ³	36	36	38	211	0	0	81	95	37	47	67	0	103	59	38	104	167	104	0	0	111	55,8	131	85	72
000dcieki, cm3/d - reaktor S	0	52	689	0	77	77	77	0	0	0	0	96	97	97	0	0	15	100	33	33	33	0	85	150	0
Odcieki, cm3/d - reaktor SR	36	80	450	340	150	150	150	97	108	335	300	120	120	120	290	78	450	370	100	100	100	195	190	190	485
Odcieki, cm3/d - reaktor P	16	50	68	0	63	63	63	0	0	0	58	50	50	50	110	0	30	200	22	22	22	0	100	160	140
Odcieki, cm3/d - reaktor PR	61	70	588	430	150	150	150	145	150	335	300	37	37	37	310	0	490	0	99	99	99	205	220	160	626
Rok badań													2006												
Data (dzień.miesiac)	16.09	17.09	18.09	19.09	20.09	21.09	22.09	23.09	24.09	25.09	26.08	27.09	28.09	29.09	30.09	1.10	2.10	3.10	4.10.	5.10	6.10	7.10	8.10	9.10	10.10
kolejny dzień pomiaru	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350
Dawkowana woda, cm3	0	0	76	79	157	50	72	0	0	72	135	130	77	124	0	0	198	140	68	151	94	0	0	162	119
Odcieki, cm3/d - reaktor S	68	68	68	0	0	0	85	67	67	67	0	100	200	0	103	103	103	0	40	0	10	70	70	70	0
Odcieki, cm3/d - reaktor SR	133	133	133	208	132	100	110	50	50	50	100	105	480	200	109	109	109	250	250	50	90	60	60	60	100
Odcieki, cm3/d - reaktor P	33	33	33	46	0	35	100	50	50	50	0	90	100	50	36	36	36	250	190	5	15	103	103	103	0
Odcieki, cm3/d - reaktor PR	165	165	165	310	194	140	190	67	67	67	100	105	420	200	100	100	100	210	250	80	80	50	50	50	100
Rok badań													2006												
Data (dzień.miesiac)	11.10	12.10	13.10	14.10	15.10																				
Kolejny dzień pomiaru	351	352	353	354	355																				
Dawkowana woda, cm3	78	207	38	0	0																				
0Odcieki, cm3/d - reaktor S	95	110	180	30	30																				
Odcieki, cm3/d - reaktor SR	420	310	300	67	67																				
Odcieki, cm3/d - reaktor P	50	15	200	17	17																				
Odcieki, cm3/d - reaktor PR	420	280	250	83	83																				

Dzień pomiaru	1	4	10	16	18	23	25	31	33	36	39	42	47	56	59	61	67	70	73
ChZT, mg O ₂ /dm ³	2400,0	2200,0	4800,0	6600,0	3300,0	2200,0	1500,0	1520,0	1800,0	1600,0	1600,0	1500,0	1708,0	1780,0	2456,0	1774,0	1254,0	1030,0	1176,0
BZT ₅ , mg O ₂ /dm ³	1160,0	980,0	2500,0	4600,0	2100,0	1400,0	953,0	910,0	960,0	730,0	680,0	610,0	830,0	864,0	1115,0	903,0	605,0	530,0	470,0
OWO,mg/dm ³	1433,0	1400,0	2116,0	1500,0	1665,0	818,0	414,0	684,0	843,0	623,0	357,0	362,0	700,0	710,0	840,0	638,0	448,0	414,0	412,0
Azot ogólny, mg/dm3	465,0	445	546,0	812,0	550,0	448,0	420,0	336,0	336,0	168,0	189,0	168,0	306,0	245,0	246,0	196,0	196,0	196,0	84,0
Azot amonowy, mg/dm3	350,0	330	475,0	525,0	375,0	205,0	184,0	263,0	172,8	89,6	89,5	75,1	130,8	134,0	196,0	89,6	128,8	68,0	50,0
Chlorki, mg/dm ³	436,0	526	634	762,3	547,8	772,9	771,2	785,4	734,0	713,0	722,0	741,0	1424,0	1424,0	958,0	840,0	700,0	1000,0	1300,0
Siarczany,mg/dm3	309,0	346	460	443,3	751,1	364,9	398,0	391,0	295,0	352,0	352,0	368,0	334,1	386,0	256,0	193,0	134,0	2204,0	1363,0
LKT, mg CH ₃ COOH /dm ³	76,0	89,0	260,0	420,0	186,0	96,0	75,0	64,0	54,8	142,8	188,6	114,3	125,0	125,0	126,0	720,0	80,0	148,0	160,0
рН	7,5	8,0	8,1	8,1	8,1	8,1	8,0	8,2	8,2	8,2	8,4	7,9	8,2	7,8	7,9	7,8	7,8	7,6	7,6
Potencjał redoks, mV	-378,0	-596,0	-237,0	-122,0	5,0	-117,0	-122,0	-136,0	-133,0	-129,0	-346,0	-140,0	-129,0	-343,0	-96,0	-114,0	-132,0	-69,0	-111,0
Zasadowość, mg CaCO ₃ / dm ³	3500,0	3550,0	3500,0	3000,0	2000,0	3000,0	1700,0	1600,0	1500,0	1475,0	1730,0	1410,0	1420,0	1125,0	1340,0	1100,0	930,0	920,0	810,0
Dzień pomiaru	80	88	91	98	101	105	108	112	115	119	122	130	132	137	139	144	146	151	153
ChZT, mg O ₂ /dm ³	896,0	930,0	930,0	716,0	628,0	750,0	1024,8	851,2	851,2	770,0	817,6	930,0	850,0	817,6	1120,0	798,0	515,2	1131,2	840,0
BZT₅, mg O₂/dm ³	434,0	413,0	400,0	394,0	386,0	388,0	684,0	510,0	350,0	38,6	26,4	46,6	82,6	71,2	62,2	18,0	53,2	17,0	20,4
OWO,mg/dm ³	360,0	474,0	416,0	434,0	446,0	688,0	536,0	308,0	346,0	332,0	310,0	284,0	302,0	308,0	278,0	276,0	280,0	312,0	324,0
Azot ogólny, mg/dm3	84,0	84,0	84,0	42,0	35,0	126,0	106,0	56,0	38,0	42,0	84,0	150,6	84,0	185,6	212,8	184,0	224,0	140,0	308,0
Azot amonowy, mg/dm3	56,0	28,0	56,0	15,6	25,6	56,0	49,0	24,0	20,0	20,0	33,6	112,0	12,6	104,0	179,2	142,8	168,0	86,8	70,0
Chlorki, mg/dm ³	1000,0	1700,0	1050,0	1700,0	1100,0	1100,0	1100,0	900,0	1000,0	950,0	775,0	1100,0	720,0	1040,0	840,0	1000,0	920,0	1040,0	1120,0
Siarczany,mg/dm3	1102,0	530,0	590,0	520,0	653,0	696,0	936,3	1071,5	1004,0	797,0	2595,0	1250,0	713,0	833,0	740,0	763,0	964,8	832,9	1066,0
LKT, mg CH ₃ COOH /dm ³	126,0	102,0	172,0	124,0	104,0	125,7	125,8	44,0	57,2	80,0	80,0	22,9	45,7	44,0	22,8	57,1	22,8	18,0	11,4
рН	7,7	7,6	7,8	7,3	7,8	8,1	7,4	8,0	7,6	7,7	7,6	7,5	8,0	8,1	7,9	7,9	7,8	7,8	7,6
Potencjał redoks, mV	-20,0	-56,0	-77,0	-45,0	-56,0	-167,0	-97,0	-42,0	-37,0	-60,0	-69,0	-94,0	-28,0	-57,0	-50,0	-118,0	-114,0	-76,0	-55,0
Zasadowość, mg CaCO ₃ / dm ³	920,0	840,0	850,0	2500,0	750,0	700,0	660,0	820,0	840,0	850,0	870,0	530,0	910,0	920,0	410,0	980,0	365,0	550,0	600,0
Dzień pomiaru	160	167	174	181	188	195	202	224	231	238	252	259	270	277	283	291	298	305	312
ChZT, mg O ₂ /dm ³	818,0	650,0	740,0	470,0	688,0	600,0	1150,0	600,0	1060,0	1344,0	1036,0	1008,0	1221,0	1127,0	1126,0	1124,0	1104,0	1094,0	1098,0
BZT ₅ , mg O ₂ /dm ³	12,0	2,2	32,0	9,0	46,0	44,0	40,6	20,0	74,0	18,3	45,0	30,0	11,0	13,0	13,0	15,0	15,0	9,0	11,0
OWO,mg/dm ³	318,0	286,0	288,0	288,0	256,0	202,0	394,0	183,0	393,0	355,0	452,0	353,0	326,0	324,0	288,0	310,0	481,0	310,0	504,0
Azot ogólny, mg/dm ³	39,2	28,0	126,0	49,0	252,0	196,0	112,0	60,0	60,0	53,0	75,0	70,0	42,0	49,0	74,0	63,0	47,0	49,0	42,0
Azot amonowy, mg/dm3	14,0	10,0	54,0	20,5	168,0	112,0	40,0	3,0	28,0	5,3	10,0	8,0	6,0	10,0	22,0	13,0	15,5	16,2	13,9
Chlorki, mg/dm ³	1120,0	780,0	1160,0	1220,0	960,0	1080,0	1420,0	780,0	1140,0	1160,0	1150,0	1025,0	1275,0	1250,0	1250,0	1450,0	1200,0	1175,0	1100,0
Siarczany,mg/dm3	1066,0	2353,0	944,0	1383,0	887,0	1237,0	1344,0	1633,0	1956,0	1839,5	1949,0	2118,0	1876,0	2109,0	2149,0	1639,4	1737,0	1891,0	2353,0
LKT, mg CH ₃ COOH /dm ³	0,0	0,0	34,2	80,0	46,0	114,0	78,0	40,0	34,0	63,0	110,0	46,0	85,0	149,0	287,0	72,0	97,0	120,0	320,0
рН	7,7	7,7	7,7	7,8	7,9	8,0	7,8	7,7	7,7	7,5	7,4	8,0	7,7	7,8	7,8	7,4	7,4	7,7	7,8
Potencjał redoks, mV	-3,0	51,0	-30,0	-20,0	-32,0	-47,0	-36,0	-30,0	15,0	-24,7	-60,0	-31,0	-16,0	33,0	-14,0	-29,0	-27,0	34,0	9,0
Zasadowość, mg CaCO ₃ / dm ³	670,0	800,0	1500,0	700,0	650,0	750,0	700,0	1000,0	540,0	590,0	650,0	650,0	670,0	750,0	700,0	710,0	550,0	670,0	730,0

Załącznik 3. Właściwości fizyczno-chemiczne odcieków z zasobni S w kolejnych dniach pomiarów – skala techniczna

c.d. załącznik 3																		
Dzień pomiaru	322	326	333	341	347	354	361	368	396	403	412	419	426	432	439	448	456	462
ChZT, mg O ₂ /dm ³	1075,0	1156,4	1103,0	1187,2	1192,5	1125,6	1148,0	1148,0	1421,0	1426,0	1428,0	1744,0	1392,0	1825,6	1652,0	1456,0	1300,0	1092,0
BZT ₅ , mg O ₂ /dm ³	11,0	11,0	6,2	11,6	9,6	10,7	1,7	7,9	73,2	97,4	100,0	120,0	84,5	81,7	131,0	107,0	74,7	56,0
OWO,mg/dm ³	319,2	324,0	334,9	341,5	346,6	316,5	329,2	317,0	621,0	982,3	981,0	1200,0	620,0	1135,0	911,0	692,0	773,9	632,0
Azot ogólny, mg/dm3	45,5	47,3	43,8	45,5	45,5	45,5	45,5	49,0	72,8	89,6	109,0	148,8	148,8	151,2	151,2	164,5	165,2	171,5
Azot amonowy, mg/dm3	15,0	15,6	14,5	15,0	15,0	15,0	15,0	16,2	24,0	32,2	39,9	70,0	79,8	49,0	64,4	73,5	59,5	58,0
Chlorki, mg/dm ³	1325,0	1375,0	1325,0	1325,0	1500,0	1200,0	975,0	1125,0	1275,0	1375,0	1325,0	1000,0	1225,0	1250,0	1275,0	1275,0	1250,0	1075,0
Siarczany,mg/dm3	1928,0	1860,0	1808,0	1928,0	1811,0	1617,0	2161,6	2078,8	2175,0	1980,0	1448,0	807,9	263,0	949,9	676,1	316,1	349,9	226,4
LKT, mg CH ₃ COOH /dm ³	173,0	68,0	68,4	78,4	114,0	114,0	17,1	69,3	135,0	171,0	177,0	170,0	190,0	240,0	291,0	160,0	228,6	217,0
рН	7,8	7,7	7,7	7,7	7,6	7,5	7,5	7,5	6,7	7,0	7,2	7,1	7,5	7,4	7,3	7,5	7,7	7,2
Potencjał redoks, mV	21,0	16,0	-1,0	11,0	20,0	-16,0	24,0	4,0	55,0	-42,0	-119,0	-326,0	-313,0	-356,0	-338,0	-213,0	-158,0	-128,0
Zasadowość, mg CaCO ₃ / dm ³	780,0	860,0	880,0	880,0	790,0	700,0	730,0	715,0	1540,0	2450,0	2600,0	3000,0	3500,0	4750,0	4100,0	3350,0	3250,0	2900,0
Dzień pomiaru	476	482	490	503	517	559	586	600	621	637	652	672	685	713	776	817	853	915
ChZT, mg O ₂ /dm ³	1330,0	1512,0	1316,0	1134,0	1125,6	1456,0	952,0	761,6	1243,0	1050,0	1136,8	1032,0	1092,0	1120,0	1420,0	1550,0	1300,0	686,0
BZT ₅ , mg O ₂ /dm ³	50,7	29,9	56,4	38,0	36,6	160,0	12,7	11,3	8,5	9,0	5,0	2,8	3,2	8,0	120,0	52,0	56,0	25,0
OWO,mg/dm ³	746,0	921,2	756,2	640,6	864,9	948,9	424,2	719,3	397,0	230,0	224,0	698,0	355,0	464,0	640,0	450,0	580,0	346,0
Azot ogólny, mg/dm3	175,0	182,0	175,0	182,0	140,0	108,4	77,0	56,0	35,0	42,0	33,6	39,2	47,6	42,0	168,0	201,0	215,0	106,0
Azot amonowy, mg/dm3	56,0	98,0	56,0	93,8	35,0	89,0	11,2	17,0	15,6	14,0	10,1	11,8	14,3	12,6	140,0	154,0	85,0	56,0
Chlorki, mg/dm ³	1150,0	1225,0	1150,0	1175,0	1150,0	1375,0	1300,0	1525,0	1550,0	1575,0	1400,0	1425,0	1375,0	1025,0	875,0	850,0	829,0	800,0
Siarczany,mg/dm3	605,1	623,6	485,1	691,3	718,3	1740,8	1482,0	2018,0	1864,2	2430,0	2067,0	1913,0	1861,0	894,0	977,0	1002,0	1185,0	1438,0
LKT, mg CH ₃ COOH /dm ³	121,8	154,3	192,9	137,2	120,0	80,0	57,0	51,4	57,1	28,6	57,1	54,0	63,5	91,0	97,0	320,0	234,0	34,0
рН	7,1	7,4	6,9	7,2	7,1	6,9	7,2	7,2	7,2	7,1	7,1	7,0	6,7	6,9	7,2	7,2	7,0	6,9
Potencjał redoks, mV	-102,0	-93,0	-96,0	-79,0	-17,0	-243,0	-93,0	-222,0	-69,0	-14,0	-23,0	-56,0	-1,0	-121,6	-174,0	-214,0	-152,0	-33,0
Zasadowość, mg CaCO ₃ / dm ³	3120,0	3110,0	3500,0	3300,0	2700,0	2600,0	2530,0	1550,0	1680,0	1590,0	1400,0	2480,0	1810,0	975,0	1410,0	1510,0	1200,0	700,0

Dzień pomiaru	1	4	10	16	18	23	25	31	33	36	39	42	47	56	59	61	67	70	73
ChZT, g O ₂ /Mg	35,54	0,15	101,58	1,86	0,22	0,15	0,14	0,10	1,40	5,10	0,56	6,19	0,03	0,52	3,55	0,67	0,37	0,19	0,39
BZT ₅ , g O ₂ /Mg	17,18	0,07	52,90	1,29	0,14	0,09	0,09	0,06	0,75	2,33	0,24	2,52	0,03	0,51	3,23	0,68	0,36	0,20	0,31
OWO, g/Mg	21,22	0,09	44,78	0,42	0,11	0,05	0,04	0,05	0,66	1,99	0,12	1,49	0,02	0,42	2,43	0,48	0,26	0,15	0,28
Azot ogólny, g/Mg	0,37	0,00	11,55	0,23	0,04	0,03	0,04	0,02	0,26	0,54	0,07	0,69	0,01	0,14	0,71	0,15	0,12	0,07	0,06
Azot amonowy, g/Mg	0,37	0,00	10,05	0,15	0,03	0,01	0,02	0,02	0,13	0,29	0,03	0,31	0,00	0,08	0,57	0,07	0,08	0,03	0,03
Chlorki, g/Mg	0,01	0,02	0,15	0,21	0,04	0,05	0,07	0,05	0,57	2,27	0,25	3,06	0,05	0,84	2,77	0,63	0,41	0,37	0,87
Siarczany, g/Mg	4,44	0,02	0,06	0,12	0,05	0,02	0,04	0,03	0,23	1,12	0,12	1,52	0,02	0,46	1,48	0,29	0,16	1,62	1,83
LKT, g CH₃COOH/Mg	0,64	0,00	5,50	0,12	0,01	0,01	0,01	0,00	0,04	0,46	0,07	0,47	0,00	0,07	0,36	0,54	0,05	0,05	0,11
Dzień pomiaru	80	88	91	98	101	105	108	112	115	119	122	130	132	137	139	144	146	151	153
ChZT, g O ₂ /Mg	0,12	0,07	0,02	0,02	0,03	0,73	0,64	0,01	0,07	0,08	0,07	0,15	2,89	0,16	0,17	0,08	0,18	0,26	0,15
BZT₅, g O₂/Mg	0,11	0,06	0,01	0,02	0,04	0,76	0,85	0,02	0,06	0,01	0,00	0,01	0,56	0,03	0,02	0,00	0,04	0,01	0,01
OWO, g/Mg	0,09	0,07	0,01	0,02	0,05	1,34	0,66	0,01	0,06	0,07	0,05	0,09	2,06	0,12	0,08	0,06	0,20	0,14	0,12
Azot ogólny, g/Mg	0,02	0,01	0,00	0,00	0,00	0,25	0,13	0,00	0,01	0,01	0,01	0,05	0,57	0,07	0,06	0,04	0,16	0,06	0,11
Azot amonowy, g/Mg	0,01	0,00	0,00	0,00	0,00	0,11	0,06	0,00	0,00	0,00	0,01	0,04	0,09	0,04	0,05	0,03	0,12	0,04	0,03
Chlorki, g/Mg	0,26	0,24	0,04	0,09	0,12	2,15	1,36	0,03	0,16	0,20	0,12	0,35	4,90	0,40	0,25	0,21	0,64	0,48	0,41
Siarczany, g/Mg	0,58	0,15	0,04	0,06	0,14	2,71	2,32	0,07	0,32	0,33	0,83	0,79	9,71	0,64	0,44	0,32	0,67	0,38	0,39
LKT, g CH₃COOH/Mg	0,03	0,01	0,01	0,01	0,01	0,25	0,16	0,00	0,01	0,02	0,01	0,01	0,31	0,02	0,01	0,01	0,02	0,01	0,00
Dzień pomiaru	160	167	174	181	188	195	202	224	231	238	252	259	270	277	283	291	298	305	312
ChZT, g O ₂ /Mg	0,11	0,03	0,32	0,14	0,05	0,05	0,65	0,51	2,82	1,99	3,55	3,09	1,41	0,47	1,52	0,52	0,99	1,15	0,22
BZT ₅ , g O ₂ /Mg	0,00	0,00	0,03	0,01	0,01	0,01	0,05	0,02	0,20	0,03	0,15	0,09	0,01	0,01	0,02	0,01	0,01	0,01	0,00
OWO, g/Mg	0,09	0,03	0,25	0,17	0,04	0,03	0,44	0,16	1,05	0,53	1,55	1,08	0,38	0,14	0,39	0,14	0,43	0,33	0,10
Azot ogólny, g/Mg	0,01	0,00	0,11	0,03	0,04	0,03	0,13	0,05	0,16	0,08	0,26	0,21	0,05	0,02	0,10	0,03	0,04	0,05	0,01
Azot amonowy, g/Mg	0,00	0,00	0,05	0,01	0,02	0,02	0,05	0,00	0,07	0,01	0,03	0,02	0,01	0,00	0,03	0,01	0,01	0,02	0,00
Chlorki, g/Mg	0,31	0,08	1,01	0,73	0,13	0,17	1,60	0,66	3,04	1,72	3,94	3,14	1,47	0,53	1,68	0,67	1,08	1,24	0,22
Siarczany, g/Mg	0,30	0,24	0,83	0,83	0,12	0,20	1,52	1,38	5,21	2,73	6,69	6,49	2,17	0,89	2,90	0,75	1,56	1,99	0,47
LKT, g CH₃COOH/Mg	0,00	0,00	0,03	0,05	0,01	0,02	0,09	0,03	0,09	0,09	0,38	0,14	0,10	0,06	0,39	0,03	0,09	0,13	0,06

Załącznik 4. Ładunki zanieczyszczeń usuwane w odciekach z zasobni S w kolejnych dniach pomiarów – skala techniczna

erar zarącznini i																		
Dzień pomiaru	322	326	333	341	347	354	361	368	396	403	412	419	426	432	439	448	456	462
ChZT, g O ₂ /Mg	0,52	0,18	1,35	0,89	1,38	1,83	7,88	1,20	1,81	0,52	0,56	7,55	0,98	0,48	0,28	0,43	0,37	0,88
BZT₅, g O₂/Mg	0,01	0,00	0,01	0,01	0,01	0,02	0,01	0,01	0,09	0,04	0,04	0,52	0,06	0,02	0,02	0,03	0,02	0,05
OWO, g/Mg	0,16	0,05	0,41	0,26	0,40	0,52	2,26	0,33	0,79	0,36	0,39	5,19	0,44	0,30	0,16	0,21	0,22	0,51
Azot ogólny, g/Mg	0,02	0,01	0,05	0,03	0,05	0,07	0,31	0,05	0,09	0,03	0,04	0,64	0,11	0,04	0,03	0,05	0,05	0,14
Azot amonowy, g/Mg	0,01	0,00	0,02	0,01	0,02	0,02	0,10	0,02	0,03	0,01	0,02	0,30	0,06	0,01	0,01	0,02	0,02	0,05
Chlorki, g/Mg	0,65	0,21	1,63	0,99	1,73	1,95	6,69	1,18	1,62	0,50	0,52	4,33	0,87	0,33	0,22	0,38	0,35	0,87
Siarczany, g/Mg	0,94	0,29	2,22	1,44	2,09	2,63	14,83	2,18	2,76	0,72	0,57	3,50	0,19	0,25	0,12	0,09	0,10	0,18
LKT, g CH₃COOH/Mg	0,08	0,01	0,08	0,06	0,13	0,19	0,12	0,07	0,17	0,06	0,07	0,74	0,13	0,06	0,05	0,05	0,06	0,18
Dzień pomiaru	476	482	490	503	517	559	586	600	621	637	652	672	685	713	776	817	853	915
ChZT, g O ₂ /Mg	0,30	0,26	1,07	0,29	0,62	0,34	2,24	0,57	0,93	1,77	3,49	0,75	0,58	1,73	1,36	0,76	0,56	0,17
BZT ₅ , g O ₂ /Mg	0,01	0,01	0,05	0,01	0,02	0,04	0,03	0,01	0,01	0,02	0,02	0,00	0,00	0,01	0,12	0,03	0,02	0,01
OWO, g/Mg	0,17	0,16	0,62	0,16	0,47	0,22	1,00	0,54	0,30	0,39	0,69	0,51	0,19	0,72	0,61	0,22	0,25	0,08
Azot ogólny, g/Mg	0,04	0,03	0,14	0,05	0,08	0,03	0,18	0,04	0,03	0,07	0,10	0,03	0,03	0,07	0,16	0,10	0,09	0,03
Azot amonowy, g/Mg	0,01	0,02	0,05	0,02	0,02	0,02	0,03	0,01	0,01	0,02	0,03	0,01	0,01	0,02	0,13	0,08	0,04	0,01
Chlorki, g/Mg	0,26	0,21	0,94	0,30	0,63	0,32	3,06	1,14	1,15	2,66	4,30	1,04	0,73	1,59	0,84	0,42	0,36	0,20
Siarczany, g/Mg	0,14	0,11	0,40	0,18	0,39	0,40	3,49	1,50	1,39	4,10	6,35	1,39	0,99	1,38	0,94	0,49	0,51	0,35
LKT, g CH₃COOH/Mg	0,03	0,03	0,16	0,04	0,07	0,02	0,13	0,04	0,04	0,05	0,18	0,04	0,03	0,14	0,09	0,16	0,10	0,01

Dzień pomiaru	1	4	10	16	18	23	25	31	33	36	39	42	47	56	59	61	67	70	73
ChZT, mg O ₂ /dm ³	785,0	665,0	800,0	650,0	750,0	700,0	350,0	520,0	650,0	500,0	800,0	750,0	1131,0	1556,8	1804,0	1798,0	1176,0	1074,0	1008,0
BZT ₅ , mg O ₂ /dm ³	130,0	160,0	190,0	120,0	90,0	86,0	64,0	93,0	106,0	86,0	73,0	75,0	220,0	260,0	290,0	312,0	265,0	215,0	193,0
OWO,mg/dm ³	252,0	207,0	315,0	286,0	250,0	210,0	110,0	200,0	280,0	227,0	208,0	226,0	466,0	602,0	726,0	732,0	592,0	502,0	522,0
Azot ogólny, mg/dm3	25,0	30,0	23,1	33,0	137,0	56,0	58,8	103,6	91,0	48,0	33,6	40,0	42,0	46,0	45,0	44,0	49,0	72,0	40,3
Azot amonowy, mg/dm3	20,0	14,0	23,0	11,0	36,7	14,2	15,0	26,8	27,8	17,0	15,2	13,4	15,6	15,0	29,7	29,0	32,3	23,8	26,6
Chlorki, mg/dm ³	250,0	268,0	262,0	248,5	205,6	325,5	388,0	500,6	526,0	624,0	630,0	640,0	764,0	1220,0	1240,0	1250,0	1250,0	1100,0	900,0
Siarczany,mg/dm3	300,0	316,0	306,0	295,3	231,5	395,2	396,0	599,0	703,0	756,0	756,0	756,0	684,0	885,0	959,0	590,0	1003,0	1200,0	1238,0
LKT, mg CH ₃ COOH /dm ³	43,0	41,0	40,0	48,0	60,0	54,0	43,0	56,0	22,9	51,4	22,8	57,4	68,6	84,0	100,0	57,0	172,0	22,8	92,0
рН	7,8	7,8	6,8	7,7	7,9	7,8	8,2	8,0	8,2	8,0	8,1	7,8	8,1	7,7	7,8	7,8	7,7	7,7	7,7
Potencjał redoks, mV	-420,0	-354,0	-140,0	-54,0	-117,0	-54,0	-90,0	-95,0	-76,0	-89,0	-105,0	-181,0	-94,0	-129,0	-86,0	-90,0	-67,0	-29,0	-41,0
Zasadowość, mg CaCO ₃ / dm ³	10,0	11,0	12,0	25,0	11,3	22,5	13,2	12,5	12,0	12,5	12,4	11,0	14,4	16,2	14,0	14,0	13,0	12,8	13,0
Dzień pomiaru	80	88	91	98	101	105	108	112	115	119	122	130	132	137	139	144	146	151	153
ChZT, mg O ₂ /dm ³	1266,0	952,0	1210,0	880,0	604,0	684,0	728,0	985,6	1052,8	894,0	965,8	985,6	907,0	896,0	907,0	991,2	649,6	812,0	918,4
BZT ₅ , mg O ₂ /dm ³	143,0	115,0	83,0	71,0	67,6	20,0	22,0	14,6	26,0	18,0	20,0	18,0	22,4	40,4	26,4	18,0	32,6	6,8	18,0
OWO,mg/dm ³	484,0	612,0	560,0	518,0	488,0	466,8	458,0	393,0	400,0	542,6	386,0	337,0	415,6	394,0	359,9	327,7	305,7	376,6	357,3
Azot ogólny, mg/dm ³	84,0	68,0	68,0	56,0	52,0	64,0	30,8	66,0	52,0	64,0	50,4	89,6	58,8	95,2	123,2	90,0	120,0	112,0	50,4
Azot amonowy, mg/dm3	27,7	22,4	22,4	18,5	17,2	21,1	10,2	9,4	15,6	19,2	21,0	42,0	17,6	25,2	61,6	59,0	109,2	61,6	33,6
Chlorki, mg/dm3	850,0	950,0	1400,0	1150,0	1150,0	1100,0	650,0	1000,0	1000,0	1250,0	975,0	1050,0	860,0	1100,0	850,0	920,0	800,0	1140,0	1140,0
Siarczany,mg/dm3	2500,0	2094,0	1340,0	1360,0	1356,0	1416,0	1000,0	1603,9	1243,9	474,9	146,7	1263,0	1194,0	1416,0	1345,0	964,0	1379,0	1293,3	1197,3
LKT, mg CH ₃ COOH /dm ³	68,0	68,0	34,0	56,0	70,0	66,0	46,0	68,0	91,4	102,8	171,4	68,6	34,2	34,3	40,0	186,0	57,2	46,0	22,8
рН	7,7	7,5	7,4	7,2	7,7	7,8	7,3	7,7	7,5	7,6	7,3	7,5	7,6	7,8	7,6	7,7	7,7	7,5	7,3
Potencjał redoks, mV	-64,0	-84,0	-72,0	-8,0	-87,0	-40,0	-34,0	-73,0	-26,0	-55,0	-68,0	-36,0	32,0	-82,0	-85,0	-114,0	-169,0	-37,0	-94,0
Zasadowość, mg CaCO ₃ / dm ³	12,6	14,0	16,0	23,0	10,0	7,2	9,4	10,2	17,2	11,0	13,4	9,0	9,6	11,8	5,2	13,6	5,4	13,6	8,2
Dzień pomiaru	160	167	174	181	188	195	202	224	231	238	252	259	270	277	283	291	298	305	312
ChZT, mg O ₂ /dm ³	1052,0	896,0	885,0	594,0	884,0	650,0	1304,0	0,0	1148,0	1008,0	1120,0	924,0	1198,0	1366,0	1289,0	1205,0	980,0	1206,0	1233,0
BZT ₅ , mg O ₂ /dm ³	13,6	6,2	32,0	80,0	60,0	12,0	40,0	20,0	14,0	7,3	40,0	28,0	13,0	20,0	11,0	11,0	9,0	11,0	9,0
OWO,mg/dm ³	358,0	358,0	344,0	332,0	350,0	240,0	478,0	108,0	263,0	355,0	433,0	355,0	343,0	397,0	321,0	299,0	291,0	342,0	398,0
Azot ogólny, mg/dm3	50,4	44,8	84,0	33,6	140,0	184,0	96,0	40,0	40,0	49,0	63,0	80,0	49,0	80,0	77,0	56,0	51,0	63,0	84,0
Azot amonowy, mg/dm3	7,0	13,4	28,0	4,2	78,0	126,0	32,0	8,4	12,0	14,7	10,0	17,0	28,0	17,0	21,0	22,4	20,4	25,2	33,6
Chlorki, mg/dm ³	1240,0	1320,0	1160,0	1240,0	1220,0	1040,0	1620,0	690,0	880,0	1000,0	1050,0	1050,0	1200,0	1350,0	1200,0	1205,0	1050,0	1075,0	1275,0
Siarczany,mg/dm3	1562,0	1556,0	1328,0	1658,0	1383,0	1697,0	1305,0	1755,0	1642,0	1815,8	1700,0	1844,0	1875,0	2095,0	2217,0	2211,0	1940,0	2506,0	2476,0
LKT, mg CH ₃ COOH /dm ³	26,0	30,0	34,2	100,0	46,0	34,0	50,0	46,0	51,0	34,0	50,0	40,0	51,0	34,0	31,0	43,0	79,8	56,0	29,0
рН	7,5	7,5	7,6	7,5	7,9	7,6	7,4	7,7	7,6	7,3	7,2	7,7	7,6	7,9	7,8	7,5	7,4	7,6	7,5
Potencjał redoks, mV	38,0	38,0	4,0	-20,0	-10,0	-35,0	-40,0	-21,0	-10,6	2,2	-54,0	-19,0	-54,0	-15,0	-17,0	-20,0	-31,0	29,0	-5,0
Zasadowość, mg CaCO ₃ / dm ³	7,4	8,6	8,4	22,6	6,6	7,1	12,0	18,8	10,4	11,8	11,8	11,0	9,6	11,2	10,2	9,6	13,8	10,8	11,4

Załącznik 5. Właściwości fizyczno-chemiczne odcieków z zasobni P w kolejnych dniach pomiarów– skala techniczna

Dzień pomiaru	322	326	333	341	347	354	361	368	396	403	412	419	426	432	439	448	456	462
ChZT, mg O ₂ /dm ³	1282,0	1167,6	1159,2	1220,8	1229,2	1125,6	1394,4	1512,0	1785,0	1022,0	1680,0	1128,0	1392,0	2100,0	1708,0	1456,0	1400,0	1435
BZT ₅ , mg O ₂ /dm ³	10,0	13,0	6,2	16,4	11,3	10,8	1,1	7,3	16,0	35,0	26,2	25,0	33,9	20,9	30,0	48,0	30,0	26,0
OWO,mg/dm ³	388,7	383,6	359,7	377,6	374,3	337,4	402,0	417,0	589,0	742,4	798,8	714,8	787,0	798,0	729,0	873,0	800,0	812,0
Azot ogólny, mg/dm ³	59,4	57,8	56,0	57,8	52,5	49,0	56,0	57,8	61,6	75,6	84,0	78,8	96,3	84,0	89,6	95,2	95,2	95,0
Azot amonowy, mg/dm3	23,8	23,1	22,4	23,1	21,0	19,6	22,4	23,1	24,6	30,2	33,6	14,0	18,9	21,0	22,0	19,6	21,9	18,6
Chlorki, mg/dm ³	1450,0	1475,0	1525,0	1487,5	1437,5	1150,0	1125,0	1275,0	1625,0	1725,0	1500,0	1025,0	1325,0	1300,0	1425,0	1275,0	1200,0	1205,6
Siarczany,mg/dm ³	2359,0	2325,0	1978,0	2068,0	2256,3	2165,0	2198,0	2356,0	2601,0	2587,0	1692,0	1374,0	1088,0	1842,0	1913,0	1096,0	1017,6	1068,0
LKT, mg CH ₃ COOH /dm ³	26,0	51,0	100,8	78,4	34,2	51,0	62,7	50,0	122,7	80,0	154,0	123,0	105,0	103,0	62,9	80,0	97,1	96,3
рН	7,5	7,5	7,6	7,6	7,5	7,4	7,4	7,5	6,9	7,3	7,2	7,2	7,3	7,4	7,4	7,4	7,4	7,4
Potencjał redoks, mV	2,0	10,0	-187,2	-27,0	-7,0	4,0	-12,0	12,0	11,6	12,3	10,6	8,1	9,6	10,0	10,6	9,6	8,8	8,9
Zasadowość, mg CaCO ₃ / dm ³	10,2	12,2	12,6	12,6	11,2	11,4	11,0	11,1	23,2	28,2	30,0	35,0	38,0	41,2	44,4	45,0	43,4	42,5
Dzień pomiaru	476	482	490	503	517	559	586	600	621	637	652	672	686	713	776	817	853	915
ChZT, mg O ₂ /dm ³	1489	1512,0	1372,0	1134,0	980,0	1489,6	1162,0	1310,4	1556,8	658,0	1551,0	1355,0	1932,0	1526,0	1750,0	1690,0	1310,0	869,0
BZT ₅ , mg O ₂ /dm ³	22,4	12,4	15,8	14,3	9,6	8,6	3,4	9,0	9,6	8,0	3,5	3,4	3,8	9,0	109,0	49,0	67,6	18,0
OWO,mg/dm ³	834,2	848,6	815,2	626,0	619,0	658,0	434,4	671,0	543,0	310,0	348,0	672,6	394,7	470,0	789,0	562,0	410,0	266,0
Azot ogólny, mg/dm ³	95,6	94,5	98,0	91,0	59,5	59,5	56,0	49,0	49,0	39,2	50,4	56,0	56,0	44,8	75,6	112,0	112,0	56,0
Azot amonowy, mg/dm3	15,3	16,8	22,4	16,1	14,0	16,0	22,4	19,6	19,6	15,7	20,2	22,4	22,4	17,9	21,0	39,2	70,0	27,0
Chlorki, mg/dm ³	1298,0	1225,0	1225,0	1225,0	1200,0	1525,0	1425,0	1450,0	1950,0	1575,0	1850,0	2000,0	1950,0	1350,0	1325,0	1390,0	1372,0	1050,0
Siarczany,mg/dm ³	1149,0	1223,6	983,6	983,6	897,5	2138,0	1793,3	2599,0	2283,4	2430,0	2278,6	2315,7	2403,0	1294,6	1328,0	1386,0	1259,0	980,0
LKT, mg CH ₃ COOH /dm ³	93,5	92,8	87,0	108,6	62,9	3,4	4,0	51,0	74,3	17,1	28,6	62,9	34,0	102,9	160,0	12,0	40,0	28,6
рН	7,3	7,3	6,9	7,1	7,1	7,3	7,2	7,3	6,9	6,8	6,9	7,0	6,4	6,8	7,2	7,0	7,0	6,8
Potencjał redoks, mV	9,2	9,4	8,5	8,6	8,2	-125,0	-54,0	-229,0	-52,0	-27,0	-1,0	-33,0	53,0	34,0	-168,0	-330,0	-318,0	-45,0
Zasadowość, mg CaCO ₃ / dm ³	41,0	40,2	40,0	44,4	38,0	22,2	25,6	19,0	25,0	17,0	23,4	29,8	30,2	19,6	21,2	23,0	23,5	14,0

Dzień pomiaru	1	4	10	16	18	23	25	31	33	36	39	42	47	56	59	61	67	70	73
ChZT, g O ₂ /Mg	10,24	0,07	26,83	0,23	0,93	0,23	0,03	0,04	0,15	0,07	0,09	0,54	0,02	0,03	3,83	0,52	0,25	0,58	0,43
BZT ₅ , g O ₂ /Mg	2,12	0,02	6,37	0,04	0,11	0,03	0,01	0,01	0,02	0,01	0,01	0,05	0,01	0,01	1,23	0,18	0,11	0,23	0,16
OWO, g/Mg	3,29	0,02	10,56	0,10	0,31	0,07	0,01	0,02	0,06	0,03	0,02	0,16	0,02	0,02	3,09	0,42	0,25	0,54	0,44
Azot ogólny, g/Mg	0,33	0,00	0,77	0,01	0,17	0,02	0,00	0,01	0,02	0,01	0,00	0,03	0,00	0,00	0,19	0,03	0,02	0,08	0,03
Azot amonowy, g/Mg	0,26	0,00	0,77	0,00	0,05	0,00	0,00	0,00	0,01	0,00	0,00	0,01	0,00	0,00	0,13	0,02	0,01	0,03	0,02
Chlorki, g/Mg	3,26	0,03	0,06	0,09	0,25	0,11	0,03	0,04	0,12	0,08	0,07	0,46	0,03	0,05	5,27	0,72	0,53	1,18	0,76
Siarczany, g/Mg	3,91	0,03	0,07	0,11	0,29	0,13	0,03	0,05	0,16	0,10	0,09	0,54	0,06	0,07	8,15	0,68	0,85	2,58	2,10
LKT, g CH₃COOH/Mg	0,56	0,00	1,34	0,02	0,07	0,02	0,00	0,00	0,01	0,01	0,00	0,04	0,00	0,00	0,42	0,03	0,07	0,02	0,08
Dzień pomiaru	80	88	91	98	101	105	108	112	115	119	122	130	132	137	139	144	146	151	153
ChZT, g O ₂ /Mg	0,27	0,03	0,02	0,03	0,03	0,48	0,08	0,10	0,04	0,02	0,04	0,05	1,75	0,12	0,09	0,05	0,05	0,06	0,06
BZT₅, g O₂/Mg	0,06	0,01	0,00	0,00	0,01	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,09	0,01	0,00	0,00	0,01	0,00	0,00
OWO, g/Mg	0,21	0,04	0,02	0,03	0,05	0,65	0,10	0,08	0,03	0,02	0,03	0,04	1,60	0,11	0,07	0,03	0,05	0,05	0,05
Azot ogólny, g/Mg	0,04	0,00	0,00	0,00	0,01	0,09	0,01	0,01	0,00	0,00	0,00	0,01	0,23	0,03	0,02	0,01	0,02	0,02	0,01
Azot amonowy, g/Mg	0,01	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,07	0,01	0,01	0,01	0,02	0,01	0,00
Chlorki, g/Mg	0,36	0,06	0,06	0,08	0,12	1,53	0,14	0,20	0,07	0,05	0,08	0,11	3,32	0,30	0,16	0,09	0,13	0,16	0,15
Siarczany, g/Mg	2,12	0,27	0,11	0,18	0,29	3,95	0,42	0,65	0,18	0,04	0,02	0,27	9,21	0,76	0,50	0,19	0,22	0,18	0,16
LKT, g CH₃COOH/Mg	0,03	0,00	0,00	0,00	0,01	0,09	0,01	0,01	0,01	0,00	0,01	0,01	0,13	0,01	0,01	0,02	0,01	0,01	0,00
Dzień pomiaru	160	167	174	181	188	195	202	224	231	238	252	259	270	277	283	291	298	305	312
ChZT, g O ₂ /Mg	0,02	0,02	0,18	0,13	0,05	0,06	0,44	0,25	1,07	0,84	2,20	1,52	1,21	0,39	0,06	0,14	0,60	1,26	1,11
BZT ₅ , g O ₂ /Mg	0,00	0,00	0,01	0,04	0,01	0,00	0,03	0,01	0,01	0,01	0,08	0,05	0,01	0,01	0,00	0,00	0,01	0,01	0,01
OWO, g/Mg	0,02	0,02	0,14	0,15	0,04	0,04	0,32	0,04	0,25	0,29	0,85	0,58	0,35	0,11	0,01	0,03	0,18	0,36	0,36
Azot ogólny, g/Mg	0,00	0,00	0,03	0,01	0,02	0,03	0,06	0,01	0,04	0,04	0,12	0,13	0,05	0,02	0,00	0,01	0,03	0,07	0,08
Azot amonowy, g/Mg	0,00	0,00	0,01	0,00	0,01	0,02	0,02	0,00	0,01	0,01	0,02	0,03	0,03	0,00	0,00	0,00	0,01	0,03	0,03
Chlorki, g/Mg	0,05	0,06	0,48	0,55	0,14	0,19	1,09	0,23	0,82	0,83	2,06	1,72	1,21	0,38	0,05	0,14	0,64	1,12	1,15
Siarczany, g/Mg	0,07	0,07	0,55	0,73	0,16	0,31	0,88	0,57	1,54	1,51	3,33	3,03	1,89	0,59	0,10	0,25	1,18	2,61	2,23
LKT, g CH₃COOH/Mg	0,00	0,00	0,01	0,04	0,01	0,01	0,03	0,02	0,05	0,03	0,10	0,07	0,05	0,01	0,00	0,00	0,05	0,06	0,03

Załącznik 6. Ładunki zanieczyszczeń usuwane w odciekach z zasobni P w kolejnych dniach pomiarów – skala techniczna

C.u. Zaiącznik U																		
Dzień pomiaru	322	326	333	341	347	354	361	368	396	403	412	419	426	432	439	448	456	462
ChZT, g O ₂ /Mg	0,62	0,05	1,25	1,02	1,88	1,89	9,85	2,32	2,15	0,37	0,91	5,22	1,57	0,82	0,39	0,42	0,54	0,90
BZT₅, g O₂/Mg	0,00	0,00	0,01	0,01	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,12	0,04	0,01	0,01	0,01	0,01	0,00
OWO, g/Mg	0,19	0,02	0,39	0,32	0,57	0,57	2,84	0,64	0,38	0,27	0,43	3,31	0,89	0,31	0,17	0,25	0,31	0,43
Azot ogólny, g/Mg	0,03	0,00	0,06	0,05	0,08	0,08	0,40	0,09	0,04	0,03	0,05	0,36	0,11	0,03	0,02	0,03	0,04	0,08
Azot amonowy, g/Mg	0,01	0,00	0,02	0,02	0,03	0,03	0,16	0,04	0,02	0,01	0,02	0,06	0,02	0,01	0,01	0,01	0,01	0,03
Chlorki, g/Mg	0,70	0,07	1,64	1,25	2,20	1,93	7,95	1,96	1,04	0,63	0,81	4,74	1,49	0,51	0,33	0,37	0,47	0,63
Siarczany, g/Mg	1,15	0,10	2,13	1,73	3,45	3,63	15,53	3,62	1,66	0,94	0,91	6,35	1,23	0,72	0,44	0,32	0,40	0,70
LKT, g CH₃COOH/Mg	0,01	0,00	0,11	0,07	0,05	0,09	0,44	0,08	0,08	0,03	0,08	0,57	0,12	0,04	0,01	0,02	0,04	0,04
Dzień pomiaru	476	482	490	503	517	559	586	600	621	637	652	672	685	713	776	817	853	915
ChZT, g O ₂ /Mg	0,60	0,71	1,13	0,24	0,37	0,39	2,33	0,82	0,04	1,33	4,99	1,19	1,00	2,11	0,64	0,30	0,24	0,12
BZT₅, g O₂/Mg	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,04	0,01	0,01	0,01
OWO, g/Mg	0,33	0,40	0,67	0,13	0,23	0,17	0,87	0,42	0,01	0,63	1,12	0,59	0,20	0,65	0,29	0,10	0,07	0,04
Azot ogólny, g/Mg	0,05	0,04	0,08	0,02	0,02	0,02	0,11	0,03	0,00	0,08	0,16	0,05	0,03	0,06	0,03	0,02	0,02	0,01
Azot amonowy, g/Mg	0,01	0,01	0,02	0,00	0,01	0,00	0,04	0,01	0,00	0,03	0,06	0,02	0,01	0,02	0,01	0,01	0,01	0,00
Chlorki, g/Mg	0,57	0,57	1,01	0,25	0,45	0,40	2,86	0,90	0,05	3,18	5,95	1,75	1,01	1,86	0,48	0,25	0,25	0,15
Siarczany, g/Mg	0,46	0,57	0,81	0,20	0,34	0,55	3,60	1,62	0,06	4,91	7,33	2,03	1,25	1,79	0,48	0,24	0,23	0,14
LKT, g CH₃COOH/Mg	0,04	0,04	0,07	0,02	0,02	0,02	0,01	0,03	0,00	0,03	0,09	0,06	0,02	0,14	0,06	0,01	0,01	0,01

Kolejny dzień pomiaru	1	4	10	16	18	23	25	31	33	36	39	42	47	56	59	61	67	70	73	80	88	91	98	101
Produkcja metanu - zasobnia S	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,02	0,03	0,04
Produkcja metanu - zasobnia P	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Udział metanu - zasobnia S	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,10	0,80	1,30	1,60	2,00
Udział metanu - zasobnia P	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Kolejny dzień pomiaru	105	108	112	115	119	122	130	132	137	139	144	146	151	153	160	167	174	181	188	195	202	224	231	238
Produkcja metanu - zasobnia S	0,05	0,04	0,03	0,05	0,05	0,07	0,07	0,08	0,08	0,08	0,09	0,08	0,09	0,09	0,11	0,12	0,12	0,14	0,16	0,17	0,19	0,26	0,37	0,60
Produkcja metanu - zasobnia P	0,01	0,02	0,02	0,04	0,05	0,06	0,07	0,08	0,09	0,10	0,11	0,11	0,12	0,15	0,20	0,23	0,25	0,28	0,32	0,34	0,36	0,52	0,60	0,69
Udział metanu - zasobnia S	2,30	2,00	1,50	2,30	2,40	3,00	2,90	3,10	3,20	3,20	3,30	3,10	3,40	3,30	3,60	3,80	3,70	4,30	4,90	4,80	5,30	6,80	9,40	14,90
Udział metanu - zasobnia P	0,60	1,80	2,30	3,40	4,20	4,90	5,70	6,20	6,80	7,30	7,80	8,00	8,40	10,20	13,50	14,60	15,80	16,90	18,60	19,50	20,00	26,30	29,50	33,40
Kolejny dzień pomiaru	252	259	270	277	283	291	298	305	312	322	326	333	341	347	354	361	368	396	403	412	419	426	432	439
Produkcja metanu - zasobnia S	0,80	0,95	1,02	1,10	1,14	1,20	1,30	1,43	1,55	1,69	1,81	2,05	2,14	2,23	2,32	2,46	2,61	2,75	2,82	2,89	2,97	3,02	3,07	3,15
Produkcja metanu - zasobnia P	0,76	0,81	0,86	0,89	0,93	0,98	1,03	1,05	1,08	1,12	1,15	1,18	1,21	1,25	1,27	1,49	1,62	1,72	1,77	1,85	1,90	1,92	1,97	2,02
Udział metanu - zasobnia S	19,0	22,0	22,80	24,00	24,60	25,30	26,90	29,00	31,00	33,00	35,00	39,00	40,00	41,00	42,00	44,00	46,00	46,00	46,50	47,00	47,60	47,90	48,20	48,90
Udział metanu - zasobnia P	35,00	36,40	37,60	38,20	39,30	40,50	41,80	42,00	42,50	43,20	43,90	44,30	44,60	45,60	46,00	53,00	57,00	58,00	59,00	61,00	61,90	62,20	63,40	64,20
Kolejny dzień pomiaru	448	456	462	476	482	490	503	517	559	586	600	621	637	652	672	685	713	776	817	853	915			
Produkcja metanu - zasobnia S	3,22	3,30	3,40	3,53	3,67	3,74	3,82	3,93	4,13	4,26	4,35	4,38	4,47	4,56	4,65	4,74	4,87	5,14	5,32	5,53	5,70			
Produkcja metanu - zasobnia P	2,06	2,08	2,09	2,13	2,14	2,16	2,17	2,19	2,25	2,28	2,30	2,31	2,33	2,35	2,36	2,35	2,35	2,31	2,24	2,17	2,03			
Udział metanu - zasobnia S	49,30	50,00	51,00	52,00	53,60	54,00	54,30	54,90	55,00	55,20	55,60	55,00	55,30	55,80	56,00	56,60	57,20	58,30	59,40	61,00	62,00			
Udział metanu - zasobnia P	65,00	65,10	65,00	65,40	65,30	65,20	64,90	64,80	65,00	65,00	65,40	65,20	65,70	66,00	66,20	66,10	66,30	66,50	66,20	66,00	66,10			

Załącznik 7. Produkcja metanu w $m^3/(Mg d)$ i jego udział w biogazie w % (v/v) - skala techniczna

Dzień pomiaru	18	36	55	73	91	109	127	146	164	182	200	218	237	255	273	291	309
ChZT, mg O ₂ /dm ³	36400	52640	51658	47180	40320	23520	25370	25370	27281	27440	27542	28003	28000	29442	30100	30100	33040
BZT ₅ , mg O ₂ /dm ³	2472	16161	15462	13154	9015	8690	7431	6100	4458	3871	3284	2505	1919	2334	2985	3280	3642
OWO,mg/dm ³	10870	11910	10968	11420	9678	10625	11230	12200	13250	14330	12680	11050	10086	10000	10165	10200	10268
Azot ogólny, mg/dm ³	728	728	754	782	672	588	580	581	579	574	584	610	639	600	550	509	480
Azot amonowy, mg/dm3	260	455	420	380	252	210	230	290	300	308	342	360	392	390	390	389	392
Chlorki, mg/dm ³	1375	1250	1220	1200	900	1400	1325	1100	925	450	680	723	775	6325	5423	4238	3261
Siarczany,mg/dm3	4021	3709	3521	3297	3703	4347	4382	4395	4415	4432	5342	6110	6392	5871	4872	4106	3825
LKT, mg CH ₃ COOH /dm ³	11314	10857	9840	9840	9143	8286	8820	9150	9335	10286	10418	10714	10800	10750	10690	10620	12480
рН	5,4	5,3	5	5,3	4,9	4,9	4,9	4,8	4,9	4,9	5,0	5,2	5,3	5,1	4,9	4,8	4,7
Potencjał redoks, mV	-304	-137	-177	-187	-146	-146	-146	-146	-146	-147	-159	-172	-184	-183	-184	-182	-182
Zasadowość, mg CaCO ₃ / dm ³	4700	4200	3548	3150	3750	2100	2150	2100	2200	2200	2868	3620	4320	3950	3740	3400	2860
Dzień pomiaru	328	346	364	382	400	419	437	455	473	491	510	528	546	564	582	601	619
ChZT, mg O ₂ /dm ³	33040	32452	31920	28543	26040	24030	22800	21028	20400	19458	17248	17248	16380	15350	15350	13384	12225
BZT ₅ , mg O ₂ /dm ³	4041	2056	1581	1658	1410	1562	1616	1863	1950	1756	1820	2089	1824	1520	1424	1354	1125
OWO,mg/dm ³	10382	9564	8808	8050	7395	7136	6902	6542	6100	5832	5320	5545	5312	4657	4380	3845	3540
Azot ogólny, mg/dm3	462	520	560	540	532	490	430	400	315	310	300	294	270	260	249	240	230
Azot amonowy, mg/dm3	394	367	315	305	308	285	271	220	200	170	140	133	138	139	141	142	139
Chlorki, mg/dm ³	2825	2700	2950	2900	2975	2450	2220	1850	1100	915	800	775	753	683	634	520	312
Siarczany,mg/dm3	3620	3954	4051	4125	4137	3952	3431	2813	2442	2231	2114	1952	1742	1520	1234	1064	912
LKT, mg CH ₃ COOH /dm ³	13860	14100	15257	15050	14571	14170	14000	13840	13200	12910	12500	11340	7800	8360	7420	6325	5550
рН	4,8	4,7	4,6	4,9	5	5	5	4,9	5	5	5,1	5,1	5,2	5,1	5	4,9	4,8
Potencjał redoks, mV	-182	-174	-169	-178	-182	-183	-184	-183	-182	-180	-178	-177	-174	-172	-168	-161	-151
Zasadowość, mg CaCO ₃ / dm ³	2350	2250	2570	2787	3550	3050	2850	2520	2380	2360	2250	2200	2190	2150	2100	2110	2050
Dzień pomiaru	637	655	673	692	710	728	746	764	783	801	819	837	855	874	892	910	928
ChZT, mg O ₂ /dm ³	11200	9444	8243	8243	6343	4202	3136	3136	2802	2704	2688	2688	1806	1482	1303	918	918,4
BZT ₅ , mg O ₂ /dm ³	4990	4050	3841	2200	2450	2230	2540	3020	2150	2062	1830	1581	1110	854	648	352	297
OWO,mg/dm ³	3120	2815	2654	2400	2265	2050	1947	1871	1530	1225	1055	980	810	740	520	450	375,5
Azot ogólny, mg/dm3	224	220	210	205	200	195	190	184,8	165	136	121	112	109	98	90	87	84
Azot amonowy, mg/dm3	140	138	139	137	135	130	128	126	115	100	80	42	40	39	40	38	35
Chlorki, mg/dm ³	160	190	170	140	120	100	80	67,5	63	61	59	55	53	49	44	39	35
Siarczany,mg/dm3	887	861	742	613	502	424	334	244	250	256	258	257,2	206	154	110	93	49
LKT, mg CH ₃ COOH /dm ³	4971	4100	3458	3040	2815	2120	2310	2143	2184	2210	2200	2280	1400	700	350	168	137
рН	4,8	4,9	4,9	5	5,1	5,2	5,4	5,6	6,1	6,5	6,8	6,5	6,3	6,4	6,3	6,2	6,3
Potencjał redoks, mV	-150	-149	-140	-139	-148	-154	-167	-172	-142	-115	-94	-72	-70	-71	-70	-69	-70
Zasadowość, mg CaCO ₃ / dm ³	2100	2080	1482	1310	1120	885	745	700	620	540	460	350	360	370	480	450	410

Załącznik 8. Właściwości fizyczno-chemiczne odcieków z reaktora S w kolejnych dniach pomiarów – skala laboratoryjna

Dzień pomiaru	18	36	55	73	91	109	127	146	164	182	200	218	237	255	273	291	309
ChZT, g O ₂ /Mg	41,5	279,0	1018,2	1327,6	1054,0	344,3	160,6	169,0	88,4	73,3	167,2	343,6	198,0	259,1	255,9	266,7	326,1
BZT ₅ , g O ₂ /Mg	2,8	85,7	304,8	370,2	235,7	127,2	47,0	40,6	14,4	10,3	19,9	30,7	13,6	20,5	25,4	29,1	35,9
OWO, g/Mg	12,4	63,1	216,2	321,4	253,0	155,6	71,1	81,3	42,9	38,3	77,0	135,6	71,3	88,0	86,4	90,4	101,3
Azot ogólny, g/Mg	0,8	3,9	14,9	22,0	17,6	8,6	3,7	3,9	1,9	1,5	3,5	7,5	4,5	5,3	4,7	4,5	4,7
Azot amonowy, g/Mg	0,3	2,4	8,3	10,7	6,6	3,1	1,5	1,9	1,0	0,8	2,1	4,4	2,8	3,4	3,3	3,4	3,9
Chlorki, g/Mg	1,6	6,6	24,0	33,8	23,5	20,5	8,4	7,3	3,0	1,2	4,1	8,9	5,5	55,7	46,1	37,5	32,2
Siarczany, g/Mg	4,6	19,7	69,4	92,8	96,8	63,6	27,7	29,3	14,3	11,8	32,4	75,0	45,2	51,7	41,4	36,4	37,8
LKT, g CH₃COOH/Mg	12,9	57,5	193,9	276,9	239,0	121,3	55,8	60,9	30,2	27,5	63,2	131,5	76,4	94,6	90,9	94,1	123,2
Dzień pomiaru	328	346	364	382	400	419	437	455	473	491	510	528	546	564	582	601	619
ChZT, g O ₂ /Mg	328,1	234,0	262,1	163,0	271,1	185,3	58,6	163,4	214,0	89,3	143,0	151,8	139,2	105,8	78,1	67,9	76,5
BZT₅, g O₂/Mg	40,1	14,8	13,0	9,5	14,7	12,0	4,2	14,5	20,5	8,1	15,1	18,4	15,5	10,5	7,2	6,9	7,0
OWO, g/Mg	103,1	69,0	72,3	46,0	77,0	55,0	17,7	50,8	64,0	26,8	44,1	48,8	45,2	32,1	22,3	19,5	22,2
Azot ogólny, g/Mg	4,6	3,7	4,6	3,1	5,5	3,8	1,1	3,1	3,3	1,4	2,5	2,6	2,3	1,8	1,3	1,2	1,4
Azot amonowy, g/Mg	3,9	2,6	2,6	1,7	3,2	2,2	0,7	1,7	2,1	0,8	1,2	1,2	1,2	1,0	0,7	0,7	0,9
Chlorki, g/Mg	28,1	19,5	24,2	16,6	31,0	18,9	5,7	14,4	11,5	4,2	6,6	6,8	6,4	4,7	3,2	2,6	2,0
Siarczany, g/Mg	35,9	28,5	33,3	23,6	43,1	30,5	8,8	21,9	25,6	10,2	17,5	17,2	14,8	10,5	6,3	5,4	5,7
LKT, g CH₃COOH/Mg	137,6	101,7	125,3	85,9	151,7	109,3	36,0	107,5	138,5	59,3	103,6	99,8	66,3	57,6	37,8	32,1	34,7
Dzień pomiaru	637	655	673	692	710	728	746	764	783	801	819	837	855	874	892	910	928
ChZT, g O ₂ /Mg	109,8	138,5	43,4	71,1	55,9	24,4	9,7	23,6	22,8	13,0	10,4	10,7	10,4	6,1	10,7	3,8	6,8
BZT₅, g O₂/Mg	48,9	59,4	20,2	19,0	21,6	13,0	7,9	22,7	17,5	9,9	7,1	6,3	6,4	3,5	5,3	1,5	2,2
OWO, g/Mg	30,6	41,3	14,0	20,7	20,0	11,9	6,0	14,1	12,5	5,9	4,1	3,9	4,7	3,0	4,3	1,9	2,8
Azot ogólny, g/Mg	2,2	3,2	1,1	1,8	1,8	1,1	0,6	1,4	1,3	0,7	0,5	0,4	0,6	0,4	0,7	0,4	0,6
Azot amonowy, g/Mg	1,4	2,0	0,7	1,2	1,2	0,8	0,4	0,9	0,9	0,5	0,3	0,2	0,2	0,2	0,3	0,2	0,3
Chlorki, g/Mg	1,6	2,8	0,9	1,2	1,1	0,6	0,2	0,5	0,5	0,3	0,2	0,2	0,3	0,2	0,4	0,2	0,3
Siarczany, g/Mg	8,7	12,6	3,9	5,3	4,4	2,5	1,0	1,8	2,0	1,2	1,0	1,0	1,2	0,6	0,9	0,4	0,4
LKT, g CH₃COOH/Mg	48,7	60,1	18,2	26,2	24,8	12,3	7,2	16,1	17,8	10,6	8,5	9,1	8,1	2,9	2,9	0,7	0,6

Załącznik 9. Ładunki zanieczyszczeń usuwane w odciekach z reaktora S w kolejnych dniach pomiarów – skala laboratotyjna

Dzień pomiaru	18	36	55	73	91	109	127	146	164	182	200	218	237	255	273	291	309
ChZT, mg O ₂ /dm ³	22400	41720	38500	38500	34160	21420	26450	23450	24528	25760	26630	27102	29680	27393	26240	26240	25480
BZT ₅ , mg O ₂ /dm ³	2472	10827	10645	10562	10116	9078	5384	7100	5428	6084	8560	9520	13830	10690	7460	6000	6120
OWO,mg/dm ³	8355	9030	9246	9340	8668	7620	7575	7514	7510	7490	7960	8650	9032	8862	8645	8420	7952
Azot ogólny, mg/dm ³	476	560	540	504	392	266	292	300	356	364	373	380	385	372	361	356	331
Azot amonowy, mg/dm3	370	480	385	252	112	131	134	140	180	203	193	190	184	175	171	168	153
Chlorki, mg/dm ³	1025	1100	1000	900	725	900	750	415	400	350	400	420	450	430	420	410	405
Siarczany,mg/dm3	2814	3553	3452	3223	2620	3343	3857	4561	5940	7207	7260	7320	7432	6200	5300	4603	3400
LKT, mg CH ₃ COOH /dm ³	10286	9531	8540	8540	7714	7771	7680	7680	7605	7600	7892	7998	8286	8205	8184	8125	8201
рН	5,3	5,2	5	5,3	4,8	4,8	4,9	4,9	4,8	4,8	4,9	5,2	5,3	5,2	5,1	5,1	5
Potencjał redoks, mV	-320	-169	-182	-190	-145	-152	-164	-166	-168	-169	-165	-163	-160	-162	-164	-165	-168
Zasadowość, mg CaCO ₃ / dm ³	2900	4200	3050	2300	4750	1730	2340	2952	2855	2700	3150	3980	4500	3765	3415	2840	2330
Dzień pomiaru	328	346	364	382	400	419	437	455	473	491	510	528	546	564	582	601	619
ChZT, mg O ₂ /dm ³	25480	21801	20720	16722	14000	13743	12830	11045	10640	7458	5040	5040	3451	2800	2800	2021	1545
BZT ₅ , mg O ₂ /dm ³	6219	6530	6656	5980	5694	3450	2491	2000	1948	1640	1368	1496	1136	987	823	630	440
OWO,mg/dm ³	7690	7060	6358	5130	4418	4080	3931	3624	3460	3100	2430	1719	1500	1320	910	720	580
Azot ogólny, mg/dm3	315	382	490	287	210	142	163	118	84	81	72	70	79	87	100	105	109
Azot amonowy, mg/dm3	112	121	126	105	92,6	58	14	8	5,6	9	16	24	29	31	38,5	42	48
Chlorki, mg/dm ³	400	350	300	250	200	260	280	300	350	300	370	225	210	205	200	200	190
Siarczany,mg/dm3	2939	2750	2594	2060	1530	1430	1343	1205	1087	1145	1260	1376	1060	950	839	725	538
LKT, mg CH ₃ COOH /dm ³	8500	8902	9171	8501	7886	6130	5101	4720	4286	4280	3010	2657	1871	1100	710	340	260
рН	4,8	4,8	4,7	5,1	5,3	5,3	5,4	5,4	5,5	5,8	6,2	6,5	6,8	7	7	7	7
Potencjał redoks, mV	-175	-170	-168	-225	-286	-274	-262	-254	-243	-293	-370	-350	-310	-290	-300	-284	-272
Zasadowość, mg CaCO ₃ / dm ³	1740	1245	910	2230	2750	2650	2540	2445	2410	2200	2105	2040	2230	2340	2400	2385	2350
Dzień pomiaru	637	655	673	692	710	728	746	764	783	801	819	837	855	874	892	910	928
ChZT, mg O ₂ /dm ³	1064	1064	1820	1945	1820	2345	2576	2576	1104	853	627	604	610	554	520	504	473
BZT₅, mg O₂/dm³	315	226	254	287	242	263	271	282	260	220	200	198	156	112	98	80	76
OWO,mg/dm ³	460	372	430	580	630	647	710	725	700	658	620	594,5	510	468	410	400	398
Azot ogólny, mg/dm3	122	126	111	100	96	92	88	84	90	97	101	117,6	100	94	83	86	95,2
Azot amonowy, mg/dm3	51	54	62	74	80	79	77	74	77	84	89	93	74	60	52	43	36
Chlorki, mg/dm ³	190	190	186	171	163	154	149	142,5	137	129	125	120	108	85	71	62	55
Siarczany,mg/dm3	312	271,1	230	180	110	81	60	47,3	47	46,5	46	45	44	43	42	43	42
LKT, mg CH ₃ COOH /dm ³	257	230	228	210	209	208	207	205	210	220	235	308	280	200	150	137	105
pН	7,1	7,1	7,2	7,2	7,2	7,2	7,2	7,2	7,3	7,3	7,4	7,2	7,1	7	6,8	6,6	6,7
Potencjał redoks, mV	-261	-264	-290	-283	-280	-279	-275	-220	-184	-110	-90	-82	-78	-70	-61	-68	-69
Zasadowość, mg CaCO ₃ / dm ³	2340	2320	1858	1630	1728	1945	2258	2410	2305	2050	1920	1800	1700	1600	1500	1420	1380

Załącznik 10. Właściwości fizyczno-chemiczne odcieków z reaktora SR w kolejnych dniach pomiarów – skala laboratoryjna

Dzień pomiaru	18	36	55	73	91	109	127	146	164	182	200	218	237	255	273	291	309
ChZT, g O ₂ /Mg	481,6	691,4	606,1	173,3	937,0	238,4	239,9	67,0	66,6	72,9	142,3	513,0	38,2	456,3	340,7	161,2	520,9
BZT ₅ , g O ₂ /Mg	53,1	179,4	167,6	47,5	277,5	101,0	48,8	20,3	14,7	17,2	45,7	180,2	17,8	178,1	96,9	36,9	125,1
OWO, g/Mg	179,6	149,6	145,6	42,0	237,8	84,8	68,7	21,5	20,4	21,2	42,5	163,7	11,6	147,6	112,3	51,7	162,6
Azot ogólny, g/Mg	10,2	9,3	8,5	2,3	10,8	3,0	2,6	0,9	1,0	1,0	2,0	7,2	0,5	6,2	4,7	2,2	6,8
Azot amonowy, g/Mg	52,7	9,3	6,1	1,1	3,1	1,5	1,2	0,4	0,5	0,6	1,0	3,6	0,2	2,9	2,2	1,0	3,1
Chlorki, g/Mg	22,0	18,2	15,7	4,1	19,9	10,0	6,8	1,2	1,1	1,0	2,1	8,0	0,6	7,2	5,5	2,5	8,3
Siarczany, g/Mg	60,5	58,9	54,3	14,5	71,9	37,2	35,0	13,0	16,1	20,4	38,8	138,6	9,6	103,3	68,8	28,3	69,5
LKT, g CH₃COOH/Mg	221,1	157,9	134,4	38,4	211,6	86,5	69,7	21,9	20,6	21,5	42,2	151,4	10,7	136,7	106,3	49,9	167,7
Dzień pomiaru	328	346	364	382	400	419	437	455	473	491	510	528	546	564	582	601	619
ChZT, g O ₂ /Mg	134,7	316,1	89,4	124,0	298,0	54,4	36,7	45,8	113,4	10,7	74,8	52,3	62,9	63,5	36,7	20,7	23,0
BZT ₅ , g O ₂ /Mg	32,9	94,7	28,7	44,3	121,2	13,7	7,1	8,3	20,8	2,3	20,3	15,5	20,7	22,4	10,8	6,4	6,6
OWO, g/Mg	40,6	102,4	27,4	38,0	94,0	16,1	11,2	15,0	36,9	4,4	36,1	17,8	27,3	29,9	11,9	7,4	8,6
Azot ogólny, g/Mg	1,7	5,5	2,1	2,1	4,5	0,6	0,5	0,5	0,9	0,1	1,1	0,7	1,4	2,0	1,3	1,1	1,6
Azot amonowy, g/Mg	0,6	1,8	0,5	0,8	2,0	0,2	0,0	0,0	0,1	0,0	0,2	0,2	0,5	0,7	0,5	0,4	0,7
Chlorki, g/Mg	2,1	5,1	1,3	1,9	4,3	1,0	0,8	1,2	3,7	0,4	5,5	2,3	3,8	4,6	2,6	2,0	2,8
Siarczany, g/Mg	15,5	39,9	11,2	15,3	32,6	5,7	3,8	5,0	11,6	1,6	18,7	14,3	19,3	21,5	11,0	7,4	8,0
LKT, g CH₃COOH/Mg	44,9	129,1	39,6	63,0	167,9	24,3	14,6	19,6	45,7	6,1	44,7	27,6	34,1	24,9	9,3	3,5	3,9
Dzień pomiaru	637	655	673	692	710	728	746	764	783	801	819	837	855	874	892	910	928
ChZT, g O ₂ /Mg	8,8	9,9	11,2	2,8	20,5	3,0	3,5	6,5	10,3	3,6	2,1	4,4	3,7	6,2	1,1	6,3	1,8
BZT ₅ , g O ₂ /Mg	2,6	2,1	1,6	0,4	2,7	0,3	0,4	0,7	2,4	0,9	0,7	1,4	0,9	1,3	0,2	1,0	0,4
OWO, g/Mg	3,8	3,4	2,7	0,8	7,1	0,8	1,0	1,8	6,5	2,8	2,0	4,3	3,1	5,2	0,9	5,0	1,9
Azot ogólny, g/Mg	1,0	1,2	0,7	0,1	1,1	0,1	0,1	0,2	0,8	0,4	0,3	0,9	0,6	1,1	0,2	1,1	0,5
Azot amonowy, g/Mg	0,4	0,5	0,4	0,1	0,9	0,1	0,1	0,2	0,7	0,4	0,3	0,7	0,5	0,7	0,1	0,5	0,2
Chlorki, g/Mg	1,6	1,8	1,1	0,2	1,8	0,2	0,2	0,4	1,3	0,5	0,4	0,9	0,7	1,0	0,2	0,8	0,3
Siarczany, g/Mg	2,6	2,5	1,4	0,3	1,2	0,1	0,1	0,1	0,4	0,2	0,2	0,3	0,3	0,5	0,1	0,5	0,2
LKT, g CH₃COOH/Mg	2,1	2,1	1,4	0,3	2,4	0,3	0,3	0,5	2,0	0,9	0,8	2,2	1,7	2,2	0,3	1,7	0,5

Załącznik 11. Ładunki zanieczyszczeń usuwane w odciekach z reaktora SR w kolejnych dniach pomiarów – skala laboratotyjna

Dzień pomiaru	18	36	55	73	91	109	127	146	164	182	200	218	237	255	273	291	309
ChZT, mg O ₂ /dm ³	33600	43680	44100	51000	39340	40852	42830	44548	46120	48440	48321	48190	48160	42150	39650	30510	27160
BZT ₅ , mg O ₂ /dm ³	3219	24850	23280	22540	7260	11800	9450	8300	6480	4533	3240	2420	1298	2150	3480	3842	3987
OWO,mg/dm ³	10670	10460	11780	12354	13392	13442	13822	14100	14132	14400	14455	14489	15806	14990	14235	13216	11875
Azot ogólny, mg/dm ³	630	672	438	504	616	595	622	628	725	756	753	759	756	687	574	528	296
Azot amonowy, mg/dm3	220	420	239	89	126	126	183	201	262	308	306	303	301	292	273	264	202
Chlorki, mg/dm ³	1156	1200	1120	1000	925	850	810	780	540	200	456	589	800	765	710	680	550
Siarczany,mg/dm3	6000	3657	3521	3320	3429	3410	4320	5100	5050	5010	5300	5870	6358	5682	5124	4615	3022
LKT, mg CH ₃ COOH /dm ³	9514	11571	12080	15943	17743	16524	16100	15910	15714	15429	15805	16106	16886	16851	16740	16720	14104
рH	6	5,7	5,4	5,5	5,3	5,3	5,4	5,3	5,3	5,3	5,4	5,6	5,8	5,7	5,7	5,7	5,6
Potencjał redoks, mV	-352	-138	-174	-194	-136	-140	-142	-148	-150	-154	-156	-157	-156	-157	-157	-157	-158
Zasadowość, mg CaCO ₃ / dm ³	4500	6396	5250	4120	7650	4290	4410	4530	4700	4850	5846	7856	9300	7458	6355	5830	4285
Dzień pomiaru	328	346	364	382	400	419	437	455	473	491	510	528	546	564	582	601	619
ChZT, mg O ₂ /dm ³	25350	24184	23520	16425	10640	7458	6100	4252	2650	2512	2464	2184	2012	1848	1645	1252	1092
BZT ₅ , mg O ₂ /dm ³	4590	5100	6080	5230	5015	3625	1850	510	260	160	252	254	230	220	210	162	130
OWO,mg/dm ³	9654	8536	6420	4853	3889	3105	2850	950	400	402	350	317	336	371	410	456	515
Azot ogólny, mg/dm ³	392	284	252	255	252	232	210	165	153	131	129	126	142	169	189	141	123
Azot amonowy, mg/dm3	189	142	126	119	112	83	57	32	20	18	15	14	15	16	16	15	13
Chlorki, mg/dm ³	500	328	275	189	100	220	320	300	290	285	261	250	241	233	225	175	141
Siarczany,mg/dm3	2564	2242	1908	1463	1185	923	820	724	584	504	423	326,2	310	272	258	221	183
LKT, mg CH ₃ COOH /dm ³	11250	9604	8571	7742	7285	4904	3120	1582	730	515	350	310	293	289	280	272	261
рH	5,5	5,4	5,3	5,8	5,8	6,3	6,9	7	7	7	6,9	6,8	6,8	6,9	6,9	6,9	6,9
Potencjał redoks, mV	-159	-182	-191	-228	-240	-274	-280	-243	-290	-288	-320	-300	-290	-280	-271	-268	-261
Zasadowość, mg CaCO ₃ / dm ³	3486	2050	1618	2458	3030	2945	2810	2615	2570	2320	2150	2100	2060	2010	1850	1800	1750
Dzień pomiaru	637	655	673	692	710	728	746	764	783	801	819	837	855	874	892	910	928
ChZT, mg O ₂ /dm ³	907	1504	1805	1842	1802	1799	1592	1452	1025	841	655	621	611	602	584	538	378
BZT ₅ , mg O ₂ /dm ³	106	100	163	198	208	210	200	198	200	230	240	282	243	204	184	131	113
OWO,mg/dm ³	584	611	536	484	472	463	458	455,5	462	466	469	469,9	455	443	432	423	415,6
Azot ogólny, mg/dm ³	109	98	125	139	145	168	173	184,8	162	121	93	61,6	60	65	78	60	62
Azot amonowy, mg/dm3	12	14	22	29	28	27	27	26,6	27	29	27	28	27	28	28	28	28
Chlorki, mg/dm ³	102	60	123	100	75	55	46	30	31	32	33	35	38	40	42	45	48
Siarczany,mg/dm3	169	158,8	191	150	85	73	66	55	52	50	50	48,6	36	23	16	9	6
LKT, mg CH ₃ COOH /dm ³	257	243	230	204	196	183	179	171	174	175	180	185	186	187	188	188	150
рН	6,9	7	7	7	7,1	7,1	7,1	7,2	7,3	7,4	7,4	7,4	7,4	7,4	7,4	7,4	7,3
Potencjał redoks, mV	-256	-254	-231	-220	-188	-141	-130	-121	-100	-94	-88	-83	-81	-70	-79	-78	-75
Zasadowość, mg CaCO ₃ / dm ³	1685	1610	1500	1440	1400	1325	1256	1180	1210	1320	1405	1480	1450	1410	1390	1365	1350

Załącznik 12. Właściwości fizyczno-chemiczne odcieków z reaktora P w kolejnych dniach pomiarów – skala laboratoryjna

Dzień pomiaru	18	36	55	73	91	109	127	146	164	182	200	218	237	255	273	291	309
ChZT, g O ₂ /Mg	1596,3	1061,0	220,5	548,8	677,0	239,8	263,8	110,9	22,6	228,2	169,1	322,9	152,7	240,7	190,3	283,7	182,2
BZT ₅ , g O ₂ /Mg	152,9	603,6	116,4	220,9	124,9	69,3	58,2	20,7	3,2	21,4	11,3	16,2	4,1	12,3	16,7	35,7	26,8
OWO, g/Mg	506,9	254,1	58,9	121,1	230,5	78,9	85,1	35,1	6,9	67,8	50,6	97,1	50,1	85,6	68,3	122,9	79,7
Azot ogólny, g/Mg	63,9	16,3	2,2	2,7	10,6	3,5	3,8	1,6	0,4	3,6	2,6	5,1	2,4	3,9	2,8	4,9	2,0
Azot amonowy, g/Mg	10,5	10,2	1,2	0,9	2,2	0,7	1,1	0,5	0,1	1,5	1,1	2,0	1,0	1,7	1,3	2,5	1,4
Chlorki, g/Mg	128,3	29,1	5,6	9,8	15,9	5,0	5,0	1,9	0,3	0,9	1,6	3,9	2,5	4,4	3,4	6,3	3,7
Siarczany, g/Mg	28,5	88,8	17,6	32,5	59,0	20,0	26,6	12,7	2,5	23,6	18,6	39,3	20,2	32,4	24,6	42,9	20,3
LKT, g CH₃COOH/Mg	452,0	281,1	60,4	156,2	305,4	97,0	99,2	39,6	7,7	72,7	55,3	107,9	53,5	96,2	80,4	155,5	94,6
Dzień pomiaru	328	346	364	382	400	419	437	455	473	491	510	528	546	564	582	601	619
ChZT, g O ₂ /Mg	303,2	270,1	206,3	84,4	109,7	41,5	21,8	30,4	9,1	11,7	15,0	11,6	10,2	14,8	7,5	6,6	6,7
BZT ₅ , g O ₂ /Mg	54,9	57,0	53,3	26,9	51,7	20,2	6,6	3,6	0,9	0,7	1,5	1,3	1,2	1,8	1,0	0,9	0,8
OWO, g/Mg	115,5	95,3	56,3	24,9	40,1	17,3	10,2	6,8	1,4	1,9	2,1	1,7	1,7	3,0	1,9	2,4	3,2
Azot ogólny, g/Mg	4,7	3,2	2,2	1,3	2,6	1,3	0,7	1,2	0,5	0,6	0,8	0,7	0,7	1,4	0,9	0,7	0,8
Azot amonowy, g/Mg	2,3	1,6	1,1	0,6	1,2	0,5	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Chlorki, g/Mg	6,0	3,7	2,4	1,0	1,0	1,2	1,1	2,1	1,0	1,3	1,6	1,3	1,2	1,9	1,0	0,9	0,9
Siarczany, g/Mg	30,7	25,0	16,7	7,5	12,2	5,1	2,9	5,2	2,0	2,3	2,6	1,7	1,6	2,2	1,2	1,2	1,1
LKT, g CH₃COOH/Mg	134,6	107,3	75,2	39,8	75,1	27,3	11,1	11,3	2,5	2,4	2,1	1,6	1,5	2,3	1,3	1,4	1,6
Dzień pomiaru	637	655	673	692	710	728	746	764	783	801	819	837	855	874	892	910	928
ChZT, g O ₂ /Mg	6,1	14,1	12,4	11,5	15,1	9,6	4,3	16,9	5,6	3,8	2,1	3,9	4,3	2,7	3,0	5,4	2,2
BZT ₅ , g O ₂ /Mg	0,7	0,8	1,1	1,2	1,7	1,1	0,5	2,3	1,1	1,1	0,8	1,7	1,7	0,9	1,0	1,3	0,6
OWO, g/Mg	4,0	5,7	3,7	3,0	3,9	2,5	1,3	5,3	2,5	2,1	1,5	2,9	3,2	2,0	2,2	4,2	2,4
Azot ogólny, g/Mg	0,7	0,9	0,9	0,9	1,2	0,9	0,5	2,2	0,9	0,6	0,3	0,4	0,4	0,3	0,4	0,6	0,4
Azot amonowy, g/Mg	0,1	0,1	0,2	0,2	0,2	0,1	0,1	0,3	0,1	0,1	0,1	0,2	0,2	0,1	0,1	0,3	0,2
Chlorki, g/Mg	0,7	0,6	0,8	0,6	0,6	0,3	0,1	0,3	0,2	0,1	0,1	0,2	0,3	0,2	0,2	0,5	0,3
Siarczany, g/Mg	1,1	1,5	1,3	0,9	0,7	0,4	0,2	0,6	0,3	0,2	0,2	0,3	0,3	0,1	0,1	0,1	0,0
LKT, g CH₃COOH/Mg	1,7	2,3	1,6	1,3	1,6	1,0	0,5	2,0	1,0	0,8	0,6	1,1	1,3	0,8	1,0	1,9	0,9

Załącznik 13. Ładunki zanieczyszczeń usuwane w odciekach z reaktora P w kolejnych dniach pomiarów – skala laboratotyjna

Dzień pomiaru	18	36	55	73	91	109	127	146	164	182	200	218	237	255	273	291	309
ChZT, mg O ₂ /dm ³	27800	29400	33600	35000	30100	32515	33402	33920	34130	35000	35120	35200	35280	30725	27840	24184	21560
BZT ₅ , mg O ₂ /dm ³	3140	22601	21730	19512	8652	16864	13820	11000	7428	4926	4523	3812	3613	4235	5621	7200	9256
OWO,mg/dm ³	7360	6830	7328	10890	9818	10560	10510	10490	11230	10850	10800	10790	10766	9232	8730	8436	7652
Azot ogólny, mg/dm ³	420	476	433	392	280	336	357	378	395	434	439	420	446	422	381	340	322
Azot amonowy, mg/dm3	220	420	305	91	112	56	89	100	72	140	162	170	175	173	170	168	156
Chlorki, mg/dm ³	550	500	682	750	375	950	853	740	681	650	753	797	800	782	751	700	592
Siarczany,mg/dm3	12750	2440	2632	2824	2133	2975	2551	2350	6684	8241	10563	11840	12478	9563	7251	6210	4103
LKT, mg CH ₃ COOH /dm ³	12000	8571	6100	11314	13800	14515	14600	16812	18974	20314	21152	21840	22886	21704	19125	17810	14430
рН	6,1	6	5,9	5,7	5,4	5,5	5,5	5,5	5,5	5,4	5,6	5,7	5,8	5,8	5,8	5,8	5,9
Potencjał redoks, mV	-341	-269	-282	-297	-249	-245	-242	-240	-239	-232	-233	-234	-235	-245	-268	-270	-279
Zasadowość, mg CaCO ₃ / dm ³	4750	5200	5420	3520	6550	4400	4930	5200	5540	5810	6500	7200	7460	6600	5900	5100	4250
Dzień pomiaru	328	346	364	382	400	419	437	455	473	491	510	528	546	564	582	601	619
ChZT, mg O ₂ /dm ³	20461	18521	15960	9205	6720	5012	4500	3082	2529	2751	2856	2712	2381	2100	1813	1402	1311
BZT₅, mg O₂/dm³	12418	14860	16935	9243	5958	3122	2100	813	367	373	381	395	352	303	292	257	243
OWO,mg/dm ³	6410	5236	4216	3485	2287	1987	1900	1843	1740	1547	1499	1445	1325	1201	1109	1001	952
Azot ogólny, mg/dm3	280	242	210	183	147	135	130	125	119	122	125	126	118	110	105	100	96
Azot amonowy, mg/dm ³	140	85	56	25	14	17	18	13	10,4	21	28	32,2	33	32	31	31	30
Chlorki, mg/dm ³	425	400	375	325	250	315	350	340	325	300	275	225	220	216	205	203	202
Siarczany,mg/dm3	2785	1152	812	1203	1581	1321	1105	873	640,6	442	262	171,4	176	178	179	191	202
LKT, mg CH ₃ COOH /dm ³	9582	6314	4286	3870	3428	2318	1100	610	514	348	171	184	189	190	208	252	264
рН	6	6,1	6,2	6,6	6,9	7	7,1	7,3	7,5	7,4	7,3	7,3	7,3	7,3	7,3	7,3	7,3
Potencjał redoks, mV	-281	-280	-280	-311	-327	-337	-356	-361	-372	-352	-348	-333	-329	-320	-302	-290	-284
Zasadowość, mg CaCO ₃ / dm ³	3790	3140	2550	2680	2880	2610	2540	2370	2260	2330	2420	2490	2410	2380	2320	2300	2250
Dzień pomiaru	637	655	673	692	710	728	746	764	783	801	819	837	855	874	892	910	928
ChZT, mg O ₂ /dm ³	1254	1231	1210	1184	1131	1129	1120	913	908	828	773	625	605	591	567	554	371
BZT ₅ , mg O ₂ /dm ³	233	226	216	206	202	200	201	198	181	172	170	169	152	121	103	83	77,5
OWO,mg/dm ³	871	824,9	771	730	633	591	590	583,7	472	467	460	455	442	425	412	406	398,9
Azot ogólny, mg/dm ³	83	70	72	76	78	80	81	81,2	78	72	65	61,6	63	61	62	60	61,6
Azot amonowy, mg/dm ³	31	30,8	30	30	29	28	28	28	26	23	21	19,6	19	17	16	15	14
Chlorki, mg/dm ³	201	200	190	180	170	160	150	140	135	130	120	115	100	90	80	70	85
Siarczany,mg/dm3	205	209,5	190	140	110	80	60	50,7	80	100	115	132,5	80	60	40	20	5
LKT, mg CH ₃ COOH /dm ³	274	264	230	200	194	181	179	171	174	178	179	180	170	164	148	137	95
pН	6,9	7	7,1	7	7	7	7	7	7,1	7,2	7,3	7,2	7,1	7	6,8	6,7	6,7
Potencjał redoks, mV	-270	-251	-163	-110	-108	-107	-107	-106	-103	-101	-100	-93	-90	-88	-85	-81	-88
Zasadowość, mg CaCO ₃ / dm ³	2200	2180	1800	1600	1650	1710	1785	1820	1780	1700	1650	1500	1400	1300	1200	1000	960

Załącznik 14. Właściwości fizyczno-chemiczne odcieków z reaktora PR w kolejnych dniach pomiarów – skala laboratoryjna

Dzień pomiaru	18	36	55	73	91	109	127	146	164	182	200	218	237	255	273	291	309
ChZT, g O ₂ /Mg	481,6	691,4	606,1	173,3	937,0	238,4	239,9	67,0	66,6	72,9	142,3	513,0	38,2	456,3	340,7	161,2	520,9
BZT ₅ , g O ₂ /Mg	53,1	179,4	167,6	47,5	277,5	101,0	48,8	20,3	14,7	17,2	45,7	180,2	17,8	178,1	96,9	36,9	125,1
OWO, g/Mg	179,6	149,6	145,6	42,0	237,8	84,8	68,7	21,5	20,4	21,2	42,5	163,7	11,6	147,6	112,3	51,7	162,6
Azot ogólny, g/Mg	10,2	9,3	8,5	2,3	10,8	3,0	2,6	0,9	1,0	1,0	2,0	7,2	0,5	6,2	4,7	2,2	6,8
Azot amonowy, g/Mg	52,7	9,3	6,1	1,1	3,1	1,5	1,2	0,4	0,5	0,6	1,0	3,6	0,2	2,9	2,2	1,0	3,1
Chlorki, g/Mg	22,0	18,2	15,7	4,1	19,9	10,0	6,8	1,2	1,1	1,0	2,1	8,0	0,6	7,2	5,5	2,5	8,3
Siarczany, g/Mg	60,5	58,9	54,3	14,5	71,9	37,2	35,0	13,0	16,1	20,4	38,8	138,6	9,6	103,3	68,8	28,3	69,5
LKT, g CH₃COOH/Mg	221,1	157,9	134,4	38,4	211,6	86,5	69,7	21,9	20,6	21,5	42,2	151,4	10,7	136,7	106,3	49,9	167,7
Dzień pomiaru	328	346	364	382	400	419	437	455	473	491	510	528	546	564	582	601	619
ChZT, g O ₂ /Mg	134,7	316,1	89,4	124,0	298,0	54,4	36,7	45,8	113,4	10,7	74,8	52,3	62,9	63,5	36,7	20,7	23,0
BZT ₅ , g O ₂ /Mg	32,9	94,7	28,7	44,3	121,2	13,7	7,1	8,3	20,8	2,3	20,3	15,5	20,7	22,4	10,8	6,4	6,6
OWO, g/Mg	40,6	102,4	27,4	38,0	94,0	16,1	11,2	15,0	36,9	4,4	36,1	17,8	27,3	29,9	11,9	7,4	8,6
Azot ogólny, g/Mg	1,7	5,5	2,1	2,1	4,5	0,6	0,5	0,5	0,9	0,1	1,1	0,7	1,4	2,0	1,3	1,1	1,6
Azot amonowy, g/Mg	0,6	1,8	0,5	0,8	2,0	0,2	0,0	0,0	0,1	0,0	0,2	0,2	0,5	0,7	0,5	0,4	0,7
Chlorki, g/Mg	2,1	5,1	1,3	1,9	4,3	1,0	0,8	1,2	3,7	0,4	5,5	2,3	3,8	4,6	2,6	2,0	2,8
Siarczany, g/Mg	15,5	39,9	11,2	15,3	32,6	5,7	3,8	5,0	11,6	1,6	18,7	14,3	19,3	21,5	11,0	7,4	8,0
LKT, g CH₃COOH/Mg	44,9	129,1	39,6	63,0	167,9	24,3	14,6	19,6	45,7	6,1	44,7	27,6	34,1	24,9	9,3	3,5	3,9
Dzień pomiaru	637	655	673	692	710	728	746	764	783	801	819	837	855	874	892	910	928
ChZT, g O ₂ /Mg	8,8	9,9	11,2	2,8	20,5	3,0	3,5	6,5	10,3	3,6	2,1	4,4	3,7	6,2	1,1	6,3	1,8
BZT ₅ , g O ₂ /Mg	2,6	2,1	1,6	0,4	2,7	0,3	0,4	0,7	2,4	0,9	0,7	1,4	0,9	1,3	0,2	1,0	0,4
OWO, g/Mg	3,8	3,4	2,7	0,8	7,1	0,8	1,0	1,8	6,5	2,8	2,0	4,3	3,1	5,2	0,9	5,0	1,9
Azot ogólny, g/Mg	1,0	1,2	0,7	0,1	1,1	0,1	0,1	0,2	0,8	0,4	0,3	0,9	0,6	1,1	0,2	1,1	0,5
Azot amonowy, g/Mg	0,4	0,5	0,4	0,1	0,9	0,1	0,1	0,2	0,7	0,4	0,3	0,7	0,5	0,7	0,1	0,5	0,2
Chlorki, g/Mg	1,6	1,8	1,1	0,2	1,8	0,2	0,2	0,4	1,3	0,5	0,4	0,9	0,7	1,0	0,2	0,8	0,3
Siarczany, g/Mg	2,6	2,5	1,4	0,3	1,2	0,1	0,1	0,1	0,4	0,2	0,2	0,3	0,3	0,5	0,1	0,5	0,2
LKT, g CH₃COOH/Mg	2,1	2,1	1,4	0,3	2,4	0,3	0,3	0,5	2,0	0,9	0,8	2,2	1,7	2,2	0,3	1,7	0,5

Załącznik 15. Ładunki zanieczyszczeń usuwane w odciekach z reaktora PR w kolejnych dniach pomiarów – skala laboratotyjna

Rok badań											-	_	2005			-					-				
Data (dzień.miesiac)	26.10	27.10	28.10	29.10	30.10	31.10	1.11	2.11	3.11	4.11	5.11	6.11	7.11	8.11	9.11	10.11	11.11	12.11	13.11	14.11	15.11	16.11	17.11	18.11	19.11
Kolejny dzień pomiaru	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Produkcja metanu - reaktor S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Produkcja metanu - reaktor SR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Produkcja metanu - reaktor P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Produkcja metanu - reaktor PR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Udział metanu - reaktor S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Udział metanu - reaktor SR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Udział metanu - reaktor P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Udział metanu - reaktor PR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rok badań													2005												
Data (dzień.miesiac)	20.11	21.11	22.11	23.11	24.11	25.11	26.11	27.11	28.11	29.11	30.11	1.12	2.120	3.12	4.12	5.12	6.12	7.12	8.12	9.12	10.12	11.12	12.12	13.12	14.12
Kolejny dzień pomiaru	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Produkcja metanu - reaktor S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Produkcja metanu - reaktor SR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Produkcja metanu - reaktor P	0	0	0	0	0	0	0	0	0	0	0,002	0,002	0,012	0,029	0,015	0,018	0,010	0,022	0,025	0,005	0,020	0,020	0,031	0,020	0,053
Produkcja metanu - reaktor PR	0	0	0	0	0	0	0	0	0	0	0,001	0,007	0,002	0,008	0,004	0,005	0,004	0,012	0,010	0,006	0,008	0,010	0,014	0,010	0,030
Udział metanu - reaktor S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Udział metanu - reaktor SR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Udział metanu - reaktor P	0	0	0	0	0	0	0	0	0	0	2,9	3,4	4,0	4,0	4,0	5,0	5,1	5,5	6,2	6,0	6,0	6,5	7,0	7,6	8,0
Udział metanu - reaktor PR	0	0	0	0	0	0	0	0	0	0	0,9	0,9	0,9	0,9	1,0	1,3	1,6	2,0	2,4	2,0	2,0	2,5	2,9	3,0	4,0
Rok badań								2005												200	6				
Data (dzień.miesiac)	15.12	16.12	17.12	18.12	19.12	20.12	21.12	22.12	23.12	24.12	25.12	26.12	27.12	28.12	29.12	30.12	31.12	1.01	2.01	3.01	4.01	5.01	6.01	7.01	8.01
Kolejny dzień pomiaru	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Produkcja metanu - reaktor S	0	0	0	0	0	0	0	0	0,001	0,006	0,004	0,004	0,005	0,004	0,007	0,002	0,004	0,005	0,004	0,001	0,003	0,015	0,012	0,014	0,014
Produkcja metanu - reaktor SR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Produkcja metanu - reaktor P	0,068	0,100	0,022	0,018	0,019	0,053	0,021	0,076	0,008	0,154	0,068	0,067	0,065	0,078	0,067	0,027	0,044	0,048	0,015	0,059	0,097	0,151	0,122	0,162	0,166
Produkcja metanu - reaktor PR	0,047	0,072	0,022	0,009	0,005	0,019	0,012	0,023	0,040	0,060	0,047	0,044	0,048	0,082	0,078	0,030	0,032	0,024	0,018	0,003	0,086	0,126	0,139	0,175	0,170
Udział metanu - reaktor S	0	0	0	0	0	0	0	0	0,6	1,8	2,0	2,4	2,9	3,5	3,8	3,7	3,3	3,3	3,0	2,8	4,1	5,6	5,8	6,1	6,6
Udział metanu - reaktor SR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Udział metanu - reaktor P	9,1	9,2	9,0	8,7	8,8	10,8	11,1	12,2	13,1	13,8	14,1	14,9	15,1	14,2	13,3	14,3	16,0	16,0	16,2	16,6	19,0	21,9	22,4	23,1	23,6
Udział metanu - reaktor PR	5,9	6,4	5,0	4,3	3,4	4,3	5,6	6,0	7,0	8,0	8,3	8,4	8,7	9,1	10,1	9,2	6,3	6,3	4,3	3,8	10,4	16,7	17,0	17,5	17,9

Załącznik 16. Produkcja metanu w reaktorach S, SR, P i PR, w dm³/d i jego udział w biogazie w % (v/v) - skala laboratoryjna

Rok badań													2006												
Data (dzień.miesiac)	9.01	10.01	11.01	12.01	13.01	14.01	15.01	16.01	17.01	18.01	19.01	20.01	21.01	22.01	23.01	24.01	25.01	26.01	27.01	28.01	29.01	30.01	31.01	1.02	2.02
Kolejny dzień pomiaru	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Produkcja metanu - reaktor S	0,008	0,037	0,037	0,012	0,030	0,028	0,033	0,040	0,072	0,088	0,003	0,056	0,030	0,032	0,031	0,046	0,104	0,100	0,066	0,110	0,046	0,075	0,090	0,080	0,193
Produkcja metanu - reaktor SR	0	0	0	0	0	0	0	0	0,002	0,007	0,009	0,004	0,004	0,002	0	0	0	0	0	0,001	0,001	0,002	0,015	0,031	0,024
Produkcja metanu - reaktor P	0,074	0,157	0,260	0,136	0,138	0,052	0,218	0,217	0,229	0,285	0,004	0,226	0,132	0,136	0,136	0,048	0,342	0,231	0,238	0,236	0,157	0,248	0,314	0,247	0,242
Produkcja metanu - reaktor PR	0,086	0,155	0,237	0,171	0,135	0,202	0,147	0,152	0,271	0,240	0,171	0,329	0,281	0,303	0,323	0,445	0,409	0,405	0,353	0,395	0,195	0,209	0,320	0,261	0,316
Udział metanu - reaktor S	6,9	7,2	7,4	8,4	8,9	9,2	10,4	11,7	12,0	13,0	13,4	13,7	13,9	14,0	14,3	16,4	19,3	19,6	19,9	20,9	21,5	22,1	23,7	24,5	25,7
Udział metanu - reaktor SR	0	0	0	0	0	0	0	0	0,8	2,5	2,7	3,0	2,5	1,5	0	0	0	0	0	0,5	0,69	1,7	7,7	8,2	8,8
Udział metanu - reaktor P	24,0	23,5	24,5	26,2	27,0	27,3	27,9	28,5	29,0	29,2	29,3	29,8	30,0	31,6	31,7	31,9	32,0	33,0	34,0	35,0	36,0	37,0	34,9	36,3	37,8,
Udział metanu - reaktor PR	18,0	18,3	19,3	19,9	20,4	21,3	22,0	22,3	23,0	24,0	25,1	27,0	28,8	31,1	33,0	34,2	35,0	34,3	33,0	32,9	32,5	32,6	31,1	31,5	31,6
Rok badań													2006												
Data (dzień.miesiąc)	3.02	4.02	5.02	6.02	7.02	8.02	9.02	10.02	11.02	12.02	13.02	14.02	15.02	16.02	17.02	18.02	19.02	20.02	21.02	22.02	23.02	24.02	25.02	26.02	27.02
Kolejny dzień pomiaru	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125
Produkcja metanu - reaktor S	0,117	0,117	0,121	0,123	0,310	0,179	0,147	0,090	0,020	0,122	0,165	0,304	0,312	0,305	0,211	0,267	0,230	0,242	0,280	0,234	0,313	0,343	0,517	0,315	0,323
Produkcja metanu - reaktor SR	0,012	0,023	0,024	0,034	0,109	0,179	0,053	0,009	0,011	0,019	0,044	0,141	0,128	0,134	0,096	0,121	0,142	0,127	0,181	0,268	0,216	0,242	0,463	0,276	0,285
Produkcja metanu - reaktor P	0,279	0,231	0,229	0,240	0,569	0,330	0,222	0,262	0,073	0,260	0,278	0,496	0,510	0,523	0,294	0,434	0,401	0,414	0,367	0,347	0,432	0,475	0,660	0,447	0,440
Produkcja metanu - reaktor PR	0,213	0,231	0,227	0,265	0,401	1,003	0,601	0,552	0,471	0,514	0,553	0,880	0,834	0,690	0,471	0,626	0,555	0,647	1,024	1,280	1,171	1,144	1,510	0,559	0,540
Udział metanu - reaktor S	26,1	26,6	26,8	28,6	27,7	28,0	26,2	25,8	24,7	24,4	33,7	33,0	32,9	32,5	33,0	33,8	35,8	35,8	35,9	39,0	39,6	39,9	40,1	40,2	40,9
Udział metanu - reaktor SR	9,0	9,3	9,4	13,5	14,7	13,7	12,3	11,0	10,9	8,5	19,0	19,5	19,6	19,7	21,5	22,0	25,4	25,4	25,8	26,3	30,5	31,0	32,0	32,3	33,5
Udział metanu - reaktor P	38,2	38,8	38,9	40,2	41,4	38,8	39,0	39,7	40,6	41,3	42,8	42,0	41,8	41,5	41,7	44,3	44,5	44,5	48,0	46,9	49,1	49,0	48,9	48,9	47,8
Udział metanu - reaktor PR	31,4	31,7	31,6	36,3	41,8	38,3	39,0	40,0	41,0	42,8	45,7	44,0	43,0	42,1	42,8	42,9	45,6	45,6	49,7	50,0	51,8	51,3	51,0	50,8	51,2
Rok badań													2006												
Data (dzień.miesiac)	28.02	1.03	2.03	3.03	4.03	5.03	6.03	7.03	8.03	9.03	10.03	11.03	12.03	13.03	14.03	15.03	16.03	17.03	18.03	19.03	20.03	21.03	22.03	23.03	24.03
Kolejny dzień pomiaru	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Produkcja metanu - reaktor S	0,610	0,535	0,448	0,475	0,190	0,539	0,557	0,419	0,391	0,665	0,498	0,340	0,343	0,405	0,661	0,632	0,473	0,625	0,492	0,509	0,492	0,610	0,668	0,505	0,788
Produkcja metanu - reaktor SR	0,557	0,481	0,430	0,465	0,616	0,369	0,391	0,486	0,546	1,187	0,730	0,693	0,777	0,797	1,348	2,014	1,373	1,185	0,691	0,596	0,661	2,034	2,524	2,139	2,279
Produkcja metanu - reaktor P	0,626	1,090	0,488	0,574	0,805	0,456	0,463	0,592	0,562	0,896	0,652	0,447	0,519	0,569	0,921	0,823	0,743	0,814	0,626	0,754	0,890	0,895	0,881	0,812	1,087
Produkcja metanu - reaktor PR	1,532	1,058	1,249	1,031	1,456	0,532	0,576	1,316	1,404	2,572	1,834	1,127	1,304	1,350	1,760	3,107	2,151	1,946	1,214	1,320	1,201	1,874	2,715	1,832	1,910
Udział metanu - reaktor S	40,7	41,5	41,5	42,0	42,3	42,6	44,0	43,7	43,4	43,2	43,3	44,8	45,7	47,6	47,2	45,8	47,3	47,0	46,9	46,3	46,4	46,6	46,7	46,9	46,9
Udział metanu - reaktor SR	34,8	35,9	37,1	37,5	37,9	38,0	41,2	41,9	41,2	42,4	42,9	45,6	47,7	48,6	48,5	50,1	48,0	46,1	43,2	42,6	44,1	45,2	45,9	46,3	47,0
Udział metanu - reaktor S	42,0	48,5	43,6	45,6	48,8	50,1	50,6	50,2	50,0	51,2	52,2	52,6	53,0	57,5	57,2	56,4	57,6	57,1	56,9	56,0	56,3	57,0	57,2	57,6	57,8
Udział metanu - reaktor SR	49,1	49,2	48,8	49,1	50,2	50,7	52,4	52,0	54,0	54,5	54,9	57,5	59,0	60,8	61,4	62,4	61,8	58,1	57,8	57,4	57,3	57,5	57,4	57,6	57,7
c.d. załącznik 16

Rok badań													2006												
Data (dzień.miesiac)	25.03	26.03	27.03	28.03	29.03	30.03	31.03	1.04	2.04	3.04	4.04	5.04	6.04	7.04	8.04	9.04	10.04	11.04	12.04	13.04	14.04	15.04	16.04	17.04	18.04
Kolejny dzień pomiaru	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
Produkcja metanu - reaktor S	0,216	0,519	0,710	0,746	0,710	0,742	0,866	0,760	0,886	0,841	0,726	0,695	0,750	0,700	0,688	0,625	0,742	0,726	0,890	0,866	0,875	0,780	0,811	0,826	0,790
Produkcja metanu - reaktor SR	2,270	2,195	2,190	2,122	2,694	1,843	2,346	1,690	1,641	1,784	1,784	1,670	2,814	2,510	2,798	1,728	1,824	1,815	2,005	1,908	1,904	1,956	2,022	1,914	1,904
Produkcja metanu - reaktor P	1,077	1,009	0,919	1,202	0,867	1,184	1,237	1,152	1,056	1,124	1,125	1,086	1,123	1,128	1,070	1,062	1,137	0,980	1,215	1,140	1,113	1,155	1,153	1,078	1,141
Produkcja metanu - reaktor PR	1,876	1,974	2,221	1,851	2,869	1,877	2,051	1,525	1,575	1,577	1,518	1,582	1,213	1,693	2,142	1,595	1,612	1,300	1,734	1,536	1,543	1,693	1,751	1,679	1,656
Udział metanu - reaktor S	47,0	47,2	48,0	46,6	48,0	47,6	52,8	46,9	48,7	51,0	50,4	50,4	500	50,0	51,0	50,0	53,0	53,0	53,0	52,5	51,5	52,0	52,0	51,6	53,0
Udział metanu - reaktor SR	47,5	487,5	47,1	48,0	49,9	47,5	60,0	48,0	45,4	48,1	48,6	48,7	53,0	52,3	52,0	53,0	57,0	55,0	56,0	55,3	56,0	55,9	56,0	55,9	56,0
Udział metanu - reaktor P	57,9	58,0	57,8	57,8	57,8	59,2	62,8	6,,0	58,2	61,4	60,8	61,0	60,4	61,0	60,0	59,0	65,0	62,0	62,0	61,6	61,5	60,5	62,0	59,9	61,0
Udział metanu - reaktor PR	57,9	57,8	58,0	58,2	60,4	59,6	63,3	61,0	60,0	61,6	61,2	62,3	63,2	62,0	63,0	61,0	65,0	63,0	64,0	64,0	63,0	64,0	63,0	62,2	62,5
Rok badań	2006																								
Data (dzień.miesiac)	19.04	20.04	21.04	22.04	23.04	24.04	25.04	26.04	27.04	28.04	29.04	30.04	1.05	2.05	3.05	4.05	5.05	6.05	7.05	8.05	9.05.	10.05	11.05	12.05	13.05
Kolejny dzień pomiaru	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Produkcja metanu - reaktor S	1,003	1,049	0,999	1,011	1,007	1,004	1,028	1,278	1,091	1,275	1,113	1,065	1,021	0,949	0,983	1,008	1,134	1,155	1,107	1,263	1,300	1,226	0,912	0,810	0,907
Produkcja metanu - reaktor SR	2,016	2,736	2,240	2,348	2,288	2,308	2,293	2,381	2,503	2,447	2,400	2,288	2,247	2,237	2,196	2,274	2,621	2,559	2,500	2,593	2,530	2,890	2,659	2,320	2,622
Produkcja metanu - reaktor P	1,383	1,198	1,184	1,225	1,168	1,110	1,135	1,505	1,228	1,221	1,116	1,155	1,121	0,937	1,057	1,081	1,170	1,104	1,159	1,219	1,328	1,219	0,994	0,967	1,159
Produkcja metanu - reaktor PR	2,090	2,835	1,803	1,920	2,000	1,962	1,764	2,123	1,915	2,309	2,257	2,142	2,016	1,762	1,829	1,789	2,202	2,246	1,905	1,906	1,802	2,405	1,496	1,324	1,420
Udział metanu - reaktor S	52,8	53,0	54,0	53,5	53,0	54,0	55,0	54,6	54,0	54,5	53,5	53,0	52,9	53,0	54,0	54,5	54,5	55,0	54,0	53,5	53,5	54,5	53,2	54,0	54,0
Udział metanu - reaktor SR	56,0	57,0	56,0	55,9	56,5	57,0	56,9	56,7	56,5	56,9	57,0	57,2	56,9	57,0	57,5	57,0	57,6	57,5	57,8	57,5	57,5	57,8	57,8	58,0	58,0
Udział metanu - reaktor P	62,0	60,5	62,0	62,5	61,8	62,0	62,0	62,2	62,0	62,0	62,0	62,1	62,3	62,5	62,0	62,3	62,4	62,0	62,0	62,5	62,5	62,5	62,1	62,4	62,3
Udział metanu - reaktor PR	62,4	63,0	63,5	64,0	63,5	63,5	63,0	63,2	63,0	63,1	63,4	63,0	63,2	63,4	63,3	63,0	63,1	63,1	63,2	63,1	63,0	63,3	63,0	62,9	63,1
Rok badań													2006												
Data (dzień.miesiac)	14.05	15.05	16.05	17.05	18.05	19.05	20.05	21.05	22.05	23.05	24.05	25.05	26.05	27.05	28.05	29.05	30.05	31.05	1.06	2.06	3.06	4.06	5.06	6.06	7.06
Kolejny dzień pomiaru	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225
Produkcja metanu - reaktor S	0,958	1,062	1,323	0,954	0,708	1,603	0,907	0,799	0,928	1,008	0,915	0,869	0,413	0,842	0,764	0,856	0,788	0,876	0,810	0,665	0,777	0,792	0,640	0,691	0,673
Produkcja metanu - reaktor SR	2,517	2,548	2,436	2,378	2,088	3,223	2,248	2,281	2,198	2,297	2,146	2,233	2,743	2,391	2,431	2,330	2,492	2,318	1,769	2,706	2,145	2,218	2,036	1,999	1,922
Produkcja metanu - reaktor P	1,244	1,277	1,261	1,029	0,769	1,308	0,890	0,777	0,934	0,919	0,905	0,515	0,906	0,810	0,701	0,652	0,857	0,739	0,785	0,594	0,814	0,748	0,691	0,643	0,626
Produkcja metanu - reaktor PR	1,537	1,622	1,685	1,447	0,991	2,092	1,100	1,078	1,118	1,129	1,051	0,989	1,685	1,435	1,284	0,828	0,775	0,907	0,745	1,296	0,786	0,771	0,792	0,615	0,647
Udział metanu - reaktor S	53,5	54,2	54,0	54,5	54,5	54,8	55,0	55,1	54,6	54,5	54,8	55,0	55,1	55,2	55,0	55,2	55,3	55,6	55,9	55,4	55,5	55,8	55,7	55,3	55,9
Udział metanu - reaktor SR	58,2	57,9	58,0	58,0	58,0	58,6	58,4	58,5	59,0	58,9	58,8	59,0	59,0	59,4	59,3	59,0	59,2	61,0	61,0	61,5	61,3	61,6	61,7	61,5	61,5
Udział metanu - reaktor P	62,2	62,3	62,3	62,0	62,0	62,3	62,5	62,2	62,3	62,3	62,4	62,1	62,3	62,3	62,3	62,1	62,3	62,9	62,8	62,5	62,6	62,4	62,8	62,7	62,6
Udział metanu - reaktor PR	63,4	63,0	63,0	63,2	63,5	63,6	63,8	63,8	63,9	63,8	63,7	63,8	63,6	63,8	63,9	63,7	63,8	64,3	64,8	64,8	64,7	64,8	64,7	64,7	64,7

c.d. załącznik 16

Rok badań													2006												
Data (dzień.miesiac)	8.06	9.06	10.06	11.06	12.06	13.06	14.06	15.06	16.06	17.06	18.06	19.06	20.06	21.06	22.06	23.06	24.06	25.06	26.06	27.06	28.06	29.06	30.06	1.07	2.07
Kolejny dzień pomiaru	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250
Produkcja metanu - reaktor S	0,746	1,053	0,810	0,770	0,737	1,281	1,123	1,163	1,082	1,117	1,109	1,110	1,212	1,297	1,161	1,102	0,885	0,997	0,890	1,219	1,244	1,249	1,303	1,258	1,330
Produkcja metanu - reaktor SR	1,913	2,526	1,916	2,163	2,005	1,906	2,105	2,039	1,993	2,101	2,129	2,163	2,108	1,900	1,844	2,009	1,962	2,006	2,012	1,818	1,884	2,441	1,599	1,722	1,654
Produkcja metanu - reaktor P	0,689	0,978	0,785	0,755	0,812	1,133	1,011	0,909	0,940	1,009	1,033	0,992	1,062	1,068	0,866	0,980	0,976	0,954	0,968	0,954	0,964	0,984	0,866	0,754	0,828
Produkcja metanu - reaktor PR	0,646	1,477	0,778	0,774	0,780	1,042	0,910	0,973	0,926	1,058	1,040	1,092	1,118	1,043	0,816	0,999	0,916	0,786	0,869	0,851	0,861	1,378	0,817	0,794	0,801
Udział metanu - reaktor S	55,3	55,4	55,9	55,4	55,6	55,7	55,6	55,4	55,5	55,3	55,6	55,5	55,1	55,2	55,3	55,1	55,3	55,4	55,6	55,4	55,3	55,5	55,2	55,2	55,4
Udział metanu - reaktor SR	61,7	61,6	61,8	61,8	61,7	61,5	61,9	61,8	61,9	61,8	61,7	61,8	62,0	62,3	62,5	62,6	62,8	62,7	62,6	62,7	62,8	62,6	62,7	62,5	62,3
Udział metanu - reaktor P	62,6	62,7	62,8	62,9	62,5	62,6	62,8	62,7	62,7	62,5	62,6	62,0	62,5	62,8	63,0	63,2	63,4	63,6	63,5	63,6	63,4	63,5	63,0	62,8	62,5
Udział metanu - reaktor PR	64,6	64,8	64,8	64,5	65,0	65,1	65,0	64,9	65,0	65,1	65,0	65,0	65,0	65,2	65,3	65,5	65,4	65,5	65,6	65,5	65,5	65,6	65,4	65,6	65,7
Rok badań	2006																								
Data (dzień.miesiąc)	3.07	4.07	5.07	6.07	7.07	8.07	9.07	10.07	11.07	12.07	13.07	14.07	15.07	16.07	17.07	18.07	19.07	20.07	21.07	22.07	23.07	24.07	25.07	26.07	27.07
Kolejny dzień pomiaru	251	252	253	254	255	256	257	258	259	260	2561	262	263	264	265	266	267	268	269	270	271	272	273	274	275
Produkcja metanu - reaktor S	1,299	1,458	1,440	1,540	1,557	1,606	1,551	1,562	1,570	1,595	1,537	1,587	1,369	1,386	1,396	1,424	1,482	1,449	1,402	1,548	1,537	1,581	1,810	1,485	1,141
Produkcja metanu - reaktor SR	1,694	1,767	2,142	2,631	1,440	1,230	1,360	1,952	1,342	1,401	1,408	1,342	1,146	1,019	1,023	0,987	0,990	1,005	1,003	1,013	1,028	1,034	1,091	1,045	1,046
Produkcja metanu - reaktor P	0,818	0,958	0,774	1,143	0,823	0,858	0,798	1,005	1,094	0,986	0,899	0,869	0,817	0,760	0,73	0,746	1,001	1,207	0,851	0,944	0,945	0,991	1,281	0,993	0,731
Produkcja metanu - reaktor PR	0,793	0,857	0,693	1,347	0,643	0,739	0,660	1,525	0,966	0,843	0,858	0,855	0,670	0,655	0,68	0,639	0,723	0,948	0,740	0,846	0,927	0,861	0,923	0,820	0,524
Udział metanu - reaktor S	55,3	55,3	55,1	55,0	55,6	55,6	55,7	55,3	55,1	55,0	55,4	55,2	55,3	55,1	55,4	55,3	55,4	55,2	55,0	55,3	55,2	55,2	55,2	55,0	55,0
Udział metanu - reaktor SR	62,4	62,0	62,1	61,9	61,3	61,5	61,8	61,0	61,0	60,9	61,2	61,0	60,8	61,2	61,1	61,1	60,9	60,9	61,0	61,0	61,2	61,4	61,3	61,5	61,0
Udział metanu - reaktor P	62,0	61,8	61,9	61,8	61,0	61,3	61,4	60,9	60,8	60,7	60,9	61,0	60,5	60,8	60,7	60,9	60,7	60,8	60,8	60,9	61,0	61,2	61,0	61,1	60,9
Udział metanu - reaktor PR	65,8	65,9	66,0	66,5	66,0	66,2	61,4	66,3	66,6	66,1	66,0	65,8	65,4	65,5	65,3	65,5	65,7	65,4	65,8	65,8	65,5	65,7	65,9	65,6	65,5
Rok badań													2006												
Data (dzień.miesiac)	28.07	29.07	30.07	31.07	1.08	2.08	3.08	4.08	5.08	6.08	7.08	8.08	9.08	10.08	11.08	12.08	13.08	14.08	15.08	16.08	17.08	18.08	19.08	20.08	21.08
Kolejny dzień pomiaru	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
Produkcja metanu - reaktor S	1,185	1,554	1,509	1,576	1,537	1,273	1,211	1,195	1,262	1,320	1,321	1,107	1,156	1,251	1,201	1,307	1,076	0,897	0,780	0,885	0,901	0,826	1,067	1,091	1,170
Produkcja metanu - reaktor SR	1,032	1,042	1,085	1,038	1,106	0,891	0,795	0,780	0,767	0,795	0,764	0,767	0,761	1,361	0,706	0,687	0,588	0,458	0,386	0,492	0,457	0,492	0,521	0,488	0,513
Produkcja metanu - reaktor P	0,844	1,035	0,996	0,942	1,071	0,863	0,832	0,818	0,769	0,774	0,776	0,702	0,672	0,712	0,659	0,704	0,656	0,667	0,520	0,535	0,538	0,588	0,614	0,637	0,675
Produkcja metanu - reaktor PR	0,654	0,792	0,808	0,802	0,745	0,658	1,451	0,578	0,545	0,551	0,510	0,473	0,483	1,181	0,476	0,486	0,364	0,274	0,239	0,329	0,340	0,400	0,424	0,394	0,400
Udział metanu - reaktor S	55,1	55,5	55,6	56,0	55,9	56,1	56,6	56,9	57,0	57,4	57,2	57,5	57,8	58,2	58,6	59,4	59,8	59,8	60,0	59,0	59,1	59,0	59,3	59,0	58,8
Udział metanu - reaktor SR	60,7	61,1	62	62,0	62,5	63,0	63,9	63,7	63,9	63,9	63,7	63,9	64,2	64,8	64,8	65,1	65,3	65,5	65,4	65,6	65,3	65,2	65,1	65,1	65,0
Udział metanu - reaktor P	60,3	60,9	61,5	61,8	62,3	62,8	63,5	63,4	63,6	63,7	63,6	63,8	64,0	64,4	64,6	64,9	65,0	65,1	65,0	64,8	68,8	65,0	64,6	64,4	64,3
Udział metanu - reaktor PR	65,4	66,0	66,5	66,8	67,1	67,5	67,8	68,0	68,1	68,0	68,0	68,5	69,0	69,5	70,0	71,0	72,0	73,0	73,5	73,1	73,4	73,2	72,5	72,4	72,0

c.d. załącznik 16

Rok badań													2006												
Data (dzień.miesiac)	22.08	23.08	24.08	25.08	26.08	27.08	28.08	29.08	30.08	31.08	1.09	2.09	3.09	4.09	5.09	6.09	7.09	8.09	9.09	10.09	11.09	12.09	13.09	14.09	15.09
Kolejny dzień pomiaru	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325
Produkcja metanu - reaktor S	1,298	0,746	0,706	1,184	1,171	1,162	1,153	1,149	0,577	0,812	0,691	0,696	0,765	0,704	0,929	0,952	0,823	0,729	0,757	0,693	0,724	0,975	0,969	0,861	1,090
Produkcja metanu - reaktor SR	0,532	0,385	0,887	0,202	0,387	0,432	0,439	0,443	0,202	0,674	0,157	0,274	0,300	0,268	0,167	0,384	0,898	0,103	0,294	0,265	0,318	0,346	0,382	0,365	0,747
Produkcja metanu - reaktor P	0,743	0,413	0,420	0,564	0,592	0,604	0,644	0,720	0,314	0,361	0,362	0,326	0,334	0,334	0,163	0,585	0,584	0,352	0,405	0,421	0,708	0,597	0,544	0,439	0,409
Produkcja metanu - reaktor PR	0,399	0,273	1,078	0,088	0,258	0,277	0,277	0,275	0,060	0,669	0,011	0,238	0,235	0,223	0,089	0,228	0,838	0,015	0,146	0,174	0,202	0,223	0,281	0,271	1,005
Udział metanu - reaktor S	59,0	59,2	59,3	59,8	61,5	61,8	62,0	62,1	62,0	62,5	62,8	63,0	63,5	64,0	64,1	63,5	63,3	63,4	63,1	63,0	63,0	62,9	62,5	62,6	62,5
Udział metanu - reaktor SR	65,3	65,8	65,7	66,1	66,2	66,0	66,1	66,2	66,1	66,4	66,8	66,9	66,7	67,0	67,0	66,8	66,5	66,7	66,8	66,2	66,2	66,0	66,5	66,4	66,7
Udział metanu - reaktor P	64,6	64,8	64,7	64,8	65,1	65,3	65,4	65,5	65,4	65,6	65,8	65,3	66,0	66,2	66,6	66,9	66,7	67,0	67,5	67,9	68	68,2	68,0	68,0	67,7
Udział metanu - reaktor PR	72,5	72,8	73,2	73,0	73,8	74,0	74,5	74,4	74,5	74,3	74,0	74,4	74,6	74,5	74,0	73,6	73,5	73,2	73,0	72,4	72,1	72,0	72,2	72,4	72,6
Rok badań													2006												
Data (dzień.miesiac)	16.09	17.09	18.09	19.09	20.09	21.09	22.09	23.09	24.09	25.09	26.08	27.09	28.09	29.09	30.09	1.10	2.10	3.10	4.10.	5.10	6.10	7.10	8.10	9.10	10.10
Kolejny dzień pomiaru	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350
Produkcja metanu - reaktor S	0,992	0,941	0,870	1,071	0,827	0,842	0,81	0,853	0,856	0,860	0,600	1,603	0,731	0,994	0,737	0,803	0780	0,988	0,679	0,697	0,542	0,477	0,511	0,506	0,868
Produkcja metanu - reaktor SR	0,388	0,395	0,393	0,331	0,231	0,321	0,449	0,409	0,464	0,435	0,476	0,391	0,765	0,238	0,340	0,334	0,354	0,187	0,136	0,238	0,205	0,190	0,177	0,184	0,343
Produkcja metanu - reaktor P	0,541	0,543	0,534	0,598	0,436	0,280	0,225	0,461	0,499	0,478	0,492	0,359	0,424	0,508	0,394	0,452	0,414	0,247	0,224	0,378	0,258	0,094	0,197	0,199	0,492
Produkcja metanu - reaktor PR	0,232	0,248	0,251	0,088	0,007	0,121	0,220	0,258	0,317	0,296	0,244	0,037	0,702	0,081	0,266	0,258	0,243	0,111	0,074	0,007	0,111	0,108	0,106	0,111	0,219
Udział metanu - reaktor S	62,0	62,0	61,9	61,9	31,3	61,0	60,8	60,9	60,7	60,6	60,0	60,5	60,9	61,2	61,4	61,8	62,4	62,2	63,2	63,4	63,8	63,7	63,9	64,0	64,3
Udział metanu - reaktor SR	66,9	67,0	67,3	67,5	67,9	67,7	68,0	68,1	68,2	68,0	68,0	68,1	68,0	67,9	68,0	68,2	68,1	68,2	68,0	68,1	68,2	68,0	68,1	68,0	68,0
Udział metanu - reaktor P	67,8	67,1	66,8	66,4	66,1	66,0	66,1	65,8	65,7	65,5	65,6	65,2	65,3	65,5	65,6	65,5	65,7	65,8	66,0	65,8	67,0	67,2	68,0	69,8	69,8
Udział metanu - reaktor PR	72,4	73,0	72,9	73,2	73,8	73,6	73,5	73,8	73,7	74,0	73,9	73,8	73,9	73,7	73,8	73,7	73,8	73,9	74,5	75,8	76,9	77,5	78,6	79,7	79,5
Rok badań													2006												
Data (dzień.miesiac)	11.10	12.10	13.10	14.10	15.10																				
Kolejny dzień pomiaru	351	352	353	354	355																				
Produkcja metanu - reaktor S	0,609	0,596	0,451	0,574	0,574																				
Produkcja metanu - reaktor SR	0,749	0,034	0,034	0,184	0,188																				
Produkcja metanu - reaktor P	0,293	0,489	0,087	0,314	0,329																				
Produkcja metanu - reaktor PR	0,817	0,056	00,42	0,063	0,079																				
Udział metanu - reaktor S	64,2	64,5	64,4	64,5	65,6																				
Udział metanu - reaktor SR	68,1	68,0	68,2	68,0	68,3																				
Udział metanu - reaktor P	69,9	69,8	69,7	69,9	70,0																				
Udział metanu - reaktor PR	79,7	79,5	79,6	79,3	79,1																				

Załącznik 17 Przykładowe obliczenia numeryczne stałych szybkości rozkładu hydrolizy, acidogenezy i metanogenezy oraz prognozowanych mas węgla wyemitowanego z odpadów w odciekach i biogazie– reaktor ZOK